Algorithms and Data Structures

Priority Queues

Marius Kloft
Special Scenarios for Searching

• Up to now, we assumed that all elements of a list are equally important and that any of them could be searched next (with varying probability)

• What if some elements are more important than others?
 – There is a (maybe partial) order on list elements
 – Most important elements are always (not mostly) retrieved next
 – Priority Queues

• Difference to Self-Organizing Lists
 – Most important element is always retrieved next – should be O(1)
 – List should be kept ordered by importance
 – We look at a scenario where new elements are inserted all the time and the most important element is removed regularly
Shortest Paths in a Graph

- Task: Find the **distance between X** and all other nodes
 - Classical problem: Single-Source-Shortest-Paths
 - Famous solution: **Dijkstra’s algorithm**
Assumptions

- We assume that there is at least one path between X and any other node (every node is reachable from X)
- We assume strictly positive edge weights
- Distance is the length (=sum of weights) of the shortest path
- There might be many shortest paths, but distance is unique
- We only want the distances and need no “witness paths”
Exhaustive Solution

- First approach: **Enumerate all paths**
 - Need to **break cycles** (e.g. X – K3 – K4 – X – K3 - ...)
Redundant work

- First approach: Enumerate all paths
 - Need to break cycles (e.g. X – K3 – K4 – X – K3 – ...)
Dijkstra’s Idea

- Enumerate **paths from X by their length**
 - Neither DFS nor BFS
- Assume we reach a node Y by a path p of length l and we have already explored all paths from X with length l’ ≤ l and that Y was not reached yet
- Then p must be a **shortest path** between X and Y
 - Because any p’ between X and Y would have a prefix of length at least l and (a) a continuation with length > 0 or (b) would not need a continuation (then p is as short as p’)
Example for Idea

1: X – K3
2: X – K3 – K2
2: X – K1
4: X – K3 – K2 – K6
4: X – K3 – K4
4: X – K3 – K7

5: X – K3 – K4 – K5
7: X – K3 – K7 – K8
Stop (all nodes found)
A Further Trick

• Enumerate paths by iteratively extending short paths by all possible extensions
 – All edges outgoing from the end node of a short path

• These extensions
 – ... either lead to a node which we didn’t reach before – then we found a path, but cannot yet be sure it is the shortest
 – ... or lead to a node which we already reached but we are not yet sure of we found the shortest path to it – update current best distance
 – ... or lead to a node which we already reached and for which we also surely found a shortest path already – these can be ignored

• Eventually, we enumerate nodes by their distance
Algorithm

1. \(G = (V, E); \)
2. \(x : \text{start_node}; \quad \# \ x \in V \)
3. \(A : \text{array_of_distances}; \)
4. \(\forall i: A[i] := \infty; \)
5. \(L := V; \)
6. \(A[x] := 0; \)
7. while \(L \neq \emptyset \)
8. \(k := L.\text{get_closest_node}(); \)
9. \(L := L \setminus k; \)
10. forall \((k,f,w) \in E \) do
11. \(\text{if } f \in L \text{ then} \)
12. \(\text{new_dist} := A[k]+w; \)
13. \(\text{if } \text{new_dist} < A[f] \text{ then} \)
14. \(A[f] := \text{new_dist}; \)
15. \(\text{end if}; \)
16. \(\text{end if}; \)
17. \(\text{end for}; \)
18. \(\text{end while}; \)

- **Assumptions**
 - Nodes have IDs between 1 \(\ldots \) |V|
 - Edges are (from, to, weight)

- **We enumerate nodes by length of their shortest paths**
 - In the first loop, we pick \(x \) and update distances (A) to all adjacent nodes
 - When we pick a node \(k \), we already have computed its distance to \(x \) in A
 - We adapt the current best distances to all neighbors of \(k \) we haven’t picked yet

- **Once we picked all nodes, we are done**
Example for Algorithm

- Pick x
Example for Algorithm

- Pick x
- Adapt distances to all neighbors
Example for Algorithm

- Pick K3 (closest to x)
Example for Algorithm

- Pick K3
- Adapt distances (from x) to all neighbors (of K3)
Example for Algorithm

- Pick K1 (or K2)
Example for Algorithm

- Pick K1
- Adapt distances to all neighbors
 - There are none
Example for Algorithm

- Pick K2

<table>
<thead>
<tr>
<th>Node</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>K1</td>
<td>2</td>
</tr>
<tr>
<td>K2</td>
<td>2</td>
</tr>
<tr>
<td>K3</td>
<td>1</td>
</tr>
<tr>
<td>K4</td>
<td>4</td>
</tr>
<tr>
<td>K5</td>
<td>∞</td>
</tr>
<tr>
<td>K6</td>
<td>5</td>
</tr>
<tr>
<td>K7</td>
<td>4</td>
</tr>
<tr>
<td>K8</td>
<td>∞</td>
</tr>
</tbody>
</table>
Example for Algorithm

- Pick K2
- Adapt distances to all neighbors
 - K1 was picked already – ignore
 - We found a shorter path to K6

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>K1</td>
<td>2</td>
</tr>
<tr>
<td>K2</td>
<td>2</td>
</tr>
<tr>
<td>K3</td>
<td>1</td>
</tr>
<tr>
<td>K4</td>
<td>4</td>
</tr>
<tr>
<td>K5</td>
<td>(\infty)</td>
</tr>
<tr>
<td>K6</td>
<td>4</td>
</tr>
<tr>
<td>K7</td>
<td>4</td>
</tr>
<tr>
<td>K8</td>
<td>(\infty)</td>
</tr>
</tbody>
</table>
Example for Algorithm

- Pick K6 (or K4 or K7)

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>K1</th>
<th>K2</th>
<th>K3</th>
<th>K4</th>
<th>K5</th>
<th>K6</th>
<th>K7</th>
<th>K8</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>K1</td>
<td>2</td>
<td></td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>K2</td>
<td>2</td>
<td>3</td>
<td></td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K3</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K4</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>K5</td>
<td>∞</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K6</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K7</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K8</td>
<td>∞</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example for Algorithm

- Pick K6
- Adapt distances to all neighbors
 - There are none
Example for Algorithm

- Pick K7
Example for Algorithm

- Pick K7
- Adapt distances to all neighbors
 - K6 was visited already
Example for Algorithm

- Pick K4
Example for Algorithm

- Pick K4
- Adapt distances to all neighbors
 - X was visited already
Example for Algorithm

- Pick K5 ... Pick K8
A Closer Look

- Algorithm seems to work
 - Proof and analysis will follow later

- Central: `get_closest_node()`
 - Needs to find the node k in L for which A[k] is the smallest
 - A[k] is changed a lot during a run

- Searching A? Resorting A?

- Better: Priority queue
 - List of tuples (o, v) (object,value)
 - Central operation: Return tuple where v is smallest

1. G = (V, E);
2. x : start_node; # x∈V
3. A : array_of_distances;
4. ∀i: A[i]:= ∞;
5. L := V;
6. A[x] := 0;
7. while L≠∅
8. k := L.get_closest_node();
9. L := L \ k;
10. forall (k,f,w)∈E do
11. if f∈L then
12. new_dist := A[k]+w;
13. if new_dist < A[f] then
15. end if;
16. end if;
17. end for;
18. end while;
Content of this Lecture

- Priority Queues
- Using Heaps
Priority Queues

- A priority queue (PQ) is an ADT with 3 essential operations
 - `add(o, v)`: Add element `o` with value (priority) `v`
 - `getMin()`: Retrieve element with highest priority
 - `removeMin()`: Remove element with highest priority

- Typical additional operations
 - `merge(p1, p2)`: Merge two PQs into one (properly sorted)
 - `create(L)`: Convert a list in a priority queue
 - `delete(o)`: Delete `o` from PQ
 - `changeValue(o, v)`: Change value of `o` to `v`
Other Applications

- **Games (e.g. chess)**
 - The machine explores next movements but cannot look at all of them; give each move an assumed benefit and explore moves with probably highest benefit first (see also A* algorithm)
- **Multi-modal route planning**
 - Find fastest route through a map (network) with multiple ways of transportation (feet, bus, train, ...) between edges where edge weights change dynamically (delay, congestion, ...)
 - And departure times may depend on arrival: Timetable-based routing
- **Quality of Service in a network**
 - When bandwidth is limited, sort all transmission requests in a PQ and transmit by highest priority
- ...
Naive Implementations (with \(|Q| = n\))

• Using a linked list
 - add requires \(O(1)\) (at the end or start or anywhere)
 - getMin requires \(O(n)\) [bad]
 - deleteMin requires \(O(1)\) (if we keep the pointer after a getMin)
 - merge requires \(O(1)\)

• Using a linked list sorted by priority
 - add requires \(O(n)\) [bad]
 - getMin requires \(O(1)\)
 - deleteMin requires \(O(1)\)
 - merge requires \(O(n+m)\)
Maybe Arrays?

- Using a sorted array
 - `add` requires $O(n)$ [bad - we find the position in $\log(n)$, but then have to free a cell by moving all elements after this cell]
 - `getMin` requires $O(1)$
 - `deleteMin` requires $O(n)$ [bad]

- PQs are typically used in applications where elements are inserted and removed all the time

- We need a DS that can change its size dynamically at very low cost while keeping a certain order (min element)

- We want constant or at most log-time for all operations
Content of this Lecture

- Priority Queues
- **Using Heaps**
 - Heaps
 - Operations on Heaps
 - Heap Sort
Heap-based PQ

- Unsorted lists require $O(n)$ for getMin()
 - We don't know where the smallest element is
- Sorted lists require $O(n)$ for add()
 - We don't know where to put the new element
- Can we find a way to keep the list “a little sorted”?
 - Actually, we only need the smallest element at a fixed position
 - All other elements can be at arbitrary places
 - $\text{add()} / \text{deleteMin()}$ could be faster than $O(n)$, if they don’t need to keep the entire list sorted
- One such structure is called a heap
Heaps

- **Definition**
 A **heap** is a labeled binary tree for which the following holds
 - **Form-constraint (FC):** The tree is complete except the last level
 - I.e.: Every node at level \(l < d - 1 \) has exactly two children
 - The last level is filled from left to right
 - **Heap-constraint (HC):** The label of any node is smaller than that of its children

```
          3
         / \
        5   8
       /   / \
      10  9  12 15
     /    /     \
    11   18
```

Level 1 Level 2 Level 3 Level 4 (last)
Properties

- **Order**
 - A heap is “a little” sorted: We know the *smallest element* (root)
 - We know the *order for some pairs* of elements (parent-child), but for many pairs we don’t know which is bigger (e.g. nodes in the same level)

- **Size**
 - A complete binary tree with m levels has $2^m - 1$ nodes
 - A heap with m levels thus has between $2^{m-1} + 1$ and $2^m - 1$ nodes
 - A heap with n nodes has $\lceil \log(n+1) \rceil$ levels
Operations

- Assume we store our PQ as a heap
- Clearly, \(\text{getMin}() \) is possible in \(O(1) \)
 - Keep a pointer to the root
- But ...
 - How can we perform \(\text{deleteMin}() \) – such that the new structure again is a heap?
 - How can we add an element to a heap – such that the new structure again is a heap?
 - How can we turn a list into a heap?
DeleteMin()

- We first remove the root
 - Creates two heaps
 - We must connect them again
- We take the „last“ node, place it in root, and „sift“ it down the tree
 - Last node: right-most in the last level
 - Sifting down: Exchange with smaller of both children as long as at least one child is smaller than the node itself
Analysis - Correctness

• We need to show that FC and HC still hold
• HC: Look at the tree after we moved a node k. k may
 – … be smaller than its children. Then HC holds and we are done
 – … be larger than at least one child k2. Assume that k2 is the
 smaller of the two children (k1, k2) of k. We next swap k and k2.
 The new parent (k2) now is smaller than its children (k1, k), so the
 HC holds
 – After the last swap, k has no children – HC holds
• FC: We remove one node, then we sift down
 – Removing last node doesn’t affect FC as we remove in the last level
 – Sifting does not change the topology of the tree (we only swap)
Analysis - Complexity

- Recall that a heap with \(n \) nodes has \(\lceil \log(n+1) \rceil \) levels.
- During sifting, we perform at most one comparison and one swap in every level.
- Thus: \(O(\lceil \log(n+1) \rceil) = O(\log(n)) \)
Add() on a Heap

- Cannot simply add on top
- Idea: We add new element somewhere in last level and **sift up**
 - We might need a new level
 - Sifting up: Compare to parent and swap if parent is larger
Analysis

- **Correctness**
 - **HC**
 - If parent has *only one child*, HC holds after each swap
 - Assume a parent k has children k1 and k2, k2 was swapped there in the last move, and k2<k. Since HC held before, k<k1, thus k2<k<k1. We swap k2 and k, and thus the new parent is smaller than its children. On the other hand, if k2≥k, HC holds immediately (and we don’t swap).
 - **FC:** See `deleteMin()`

- **Complexity:** O(log(n))
 - See `deleteMin()`
How to Find the Next Free / Last Occupied Node

• What do we need to find?
 – For **deleteMin**, we use the right-most leaf on the last level
 – For **add**, we add the leaf right to the last leaf

• We actually need the parent k
 – From n, we can compute in O(1) the position p of the last leaf in
 the last level: $p = n - 2^{\lfloor \log(n) \rfloor}$
 • Or $\log(n+1)$ for **add**
 – The parent k of the node at p has index $\lfloor p/2 \rfloor$’th in level d-1
 – The parent k’ of k has index $\lfloor p/4 \rfloor$’th in level d-2
 – ...
 – Now, in each node, we can decide whether to go left or right
 – Fast trick: Use the binary representation of p
Illustration

- For \texttt{deleteMin}, we need \(x \) (or \(x' \)); for \texttt{add}, we need \(y \) (or \(y' \))
 - \(p(x)=0, p(y)=1, p(x')=4, p(y')=5 \)
 - Binary: 000, 001, 100, 101
- Go through bitstring from left-to-right
- Next bit=0: Go left
- Next bit=1: Go right

- Allows finding \(k \) in \(O(\log(n)) \)
Summary

<table>
<thead>
<tr>
<th></th>
<th>Linked list</th>
<th>Sorted linked list</th>
<th>Heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>getMin()</td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>deleteMin()</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(log(n))</td>
</tr>
<tr>
<td>add()</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(log(n))</td>
</tr>
<tr>
<td>merge()</td>
<td>O(1)</td>
<td>O(n1+n2)</td>
<td>O(log(n1)*log(n2))</td>
</tr>
<tr>
<td>Space</td>
<td>n add. pointer</td>
<td>n add. pointer</td>
<td>n add. pointer</td>
</tr>
</tbody>
</table>

Heaps can also be kept efficiently in an array – no extra space, but limit to heap size.
Creating a Heap

• We start with an unsorted list with n elements

• Naïve algorithm: Start with empty heap and perform n additions
 – Obviously requires $O(n \log(n))$

• Better: Bottom-Up-Sift-Down
 – Build a tree from the n elements fulfilling the FC (but not HC)
 • Simple fill a tree level-by-level – this is in $O(n)$
 – Sift-down all nodes on the second-last level
 – Sift-down all nodes on the third-last level
 – ...
 – Sift down root
Illustration

- Start with right most inner node at second-to-last level: 8
Illustration

- Sift down 8 (swap with smallest child)
Illustration

- Done with second-to-last level
- Next, work on third-to-last level, from right to left
Illustration

- Sift down 18
Illustration

- Sift down 10
• Sift down 10
Illustration

- Sift down 10
Illustration

- Sift down 15
Illustration

- Sift down 15
Illustration

- Done
Analysis

• Correctness
 – After finishing one level, all subtrees starting in this level are heaps because sifting-down ensures FC and HC (see `deleteMin()`)
 – Thus, when we are done with the first level (root), we have a heap

• Analysis
 – We look at the cost per level \(h \) (1 ... \(\log(n) = d \))
 – For every node at level \(h \), we need at most \(d-h \) operations
 – At level \(h \neq d \), there are \(2^{h-1} \) nodes
 • For nodes at level \(d \), we don’t do anything
 – Over all levels, this yields

\[
T(n) = \sum_{h=1}^{d-1} 2^{h-1} \cdot (d-h) = \sum_{h=1}^{d-1} h \cdot 2^{d-h-1} = 2^{d-1} \sum_{h=1}^{d-1} \frac{h}{2^h} \leq n \sum_{h=1}^{\infty} \frac{h}{2^h} = n \cdot 2 = O(n)
\]
Heap Sort

- Heaps also are a suitable data structure for sorting

- **Heap-Sort** (a classical sorting algorithm)
 - Given an unsorted list, first create a heap in $O(n)$
 - Repeat
 - Take the smallest element and store in array in $O(1)$
 - Re-build heap in $O(\log(n))$
 - Call `deleteMin(root)`
 - Until heap is empty – after n iterations

- Thus: $O(n*\log(n))$
 - Average-case only slightly better

- Can be implemented in-place when heap is stored in array
 - See [OW93] for details