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Abstract
While training the one-vs.-rest SVM can be parallelized over the number of classes
in a straight forward way, the so-called all-in-one multi-class SVMs (Crammer and
Singer, Weston and Watkins, Lee et al.) are still mostly non applicable for extreme
classification.
We work towards distributed algorithms for all-in-one MC-SVMs, starting – by the
present paper – with the formulation by Weston and Watkins (WW), for which we
propose a distributed solver that can be parallelized over the number of classes,
with decent computational overhead.

1 Introduction
Extreme classification problems involve a large number of classes, typically at least in the thousands.
This motivates research on scaling up multi-class classification methods. In the present work, we
address scaling up multi-class support vector machines (MC-SVMs) [1]. There are two major types
of MC-SVMs:

1. The one-vs.-one (OVO) and one-vs.-rest (OVR) machines, which decompose the problem into
multiple binary subproblems that are subsequently aggregated [1, 2]. Training can be distributed in
a straight forward way [3, 4].

2. The all-in-one approaches, which extend the concept of the margin to multiple classes. Because
there is no unique extension of the margin concept, multiple MC-SVM variants have been proposed,
including the ones by Crammer and Singer (CS) [5], Lee, Lin, and Wahba (LLW) [6], and Weston
and Watkins (WW) [7, 1]. See [2, 8–13] for conceptual and empirical comparisons.

So far, slow training time has prohibited comparing the various all-in-one MC-SVM variants in
the large number of label domains. The reason is that (linear) state of the art solvers require
time complexity of O(d̄n̄ · C2) and space complexity at least of O(n̄C2), where d is the feature
dimensionality, d̄ the average number of non-zeros (d̄ = d for dense data), and n̄ the average number
of samples per class. This quadratic dependence on the number of classes C can be prohibitive for
large C, often leaving the simplistic OVO and OVR SVMs as the only MC-SVM options in the big
data setting.

We want to work toward comparing the various all-in-one MC-SVM variants in the large number of
classes domain. In the present paper, we start by addressing the MC-SVM by Weston and Watkins
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(WW) [7, 1], which has been shown in [13] to outperform LLW and CS. We propose a distributed
algorithm for WW, where up to O(C) machines solve an all-in-one MC-SVM problem in parallel,
while dividing the model evenly over the machines.

Our algorithm draws inspiration from a major result in graph theory: the solution to the 1-factorization
problem of a graph [14]. The core insight that lets us distribute the coordinate ascent training of the
WW SVM is that the optimization of a single coordinate αi,c of the dual objective involves only the
two hypotheses wyi and wc. We can thus form pairs of classes where the corresponding blocks of
coordinates can be optimized in parallel.

We report on empirical runtime comparisons of the proposed solver with the state of the art on
standard benchmark data from various domains as well as massive text classification data taken from
the LSHTC corpus [3]. To our knowledge, we are the first to train WW on datasets from the LSHTC
corpus [3] using the full feature resolution.

The paper is structured as follows. In the next section, we the discuss problem setting and preliminar-
ies. In Section 3, we present the proposed distributed algorith for WW. We analyze its convergence
empirically in Section 4. Section 5 concludes.

2 Preliminaries

We consider the following problem. We are given data (x1, y1), . . . , (xn, yn) with xi ∈ Rd and
yi ∈ {1, ..., C}. Each class has in average n̄ samples. The largest number of samples for a single
class is nmax. We are predicting using the model

ŷ(x) := argmax
c

wTc x, (1)

where W = (w1, .., wC) ∈ Rd×C are unknown parameters. The aim is to efficiently find good
parameters in order to predict well on new data using (1).

To address this problem setting, a number of generalizations of the binary SVM [15] have been pro-
posed. We are specifically studying the following formulation, dropping the bias terms. Throughout
this paper, l(x) = max{0, 1− x} will denote the hinge-loss.

Weston and Watkins (WW) [7]

min
W

C∑
c=1

1

2
||wc||2 + C

∑
i:yi 6=c

l(wTyixi − w
T
c xi)

 (2)

The dualization reads as follows:

max
α∈Rn×C

C∑
c=1

−1

2
|| −Xαc||2 +

∑
i:yi 6=c

αi,c


s.t. ∀i : αi,yi = −

∑
c:c6=yi

αi,c, ∀c 6= yi : 0 ≤ αi,c ≤ C
(WW)

3 Algorithm

In this section, we derive an algorithm that solves (WW) in a distributed manner, using dual block
coordinate ascent (DBCA). Our solver runs dual coordinate ascent as proposed in [16, Algorithm
3.1]. Our contribution is that – by a trick to be explained below – we are able to develop a scheme
that distributes the computations.

3.1 Preliminaries
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Algorithm 1 Solving 1-dim WW sub-problem
induced by a single dual variable αi,c.

1: function SOLVE1DIMWW(i,c)
2: global C,X,wyi , wc, αc, optimal
3: g← (wTyi − w

T
c )xi − 1

4: if g < −ε and αi,c < C then
5: δ←min{C − αi,c,−g/2ki}
6: optimal← False
7: if g > ε and αi,c > 0 then
8: δ←max{−αi,c,−g/2ki}
9: optimal← False

10: wyi ← wyi + δxi
11: wc ← wc − δxi
12: αi,c ← αi,c + δ

We recapitulate [16, Algorithm 3.1] as Algo-
rithm 1 in the table to the right. The core idea of
the algorithm is to optimizes one dual variable
αi,c at a time as follows.

Denote the objective in WW by D(α) and recall
from [16] that optimizing αi,c is solving the
problem

argmax
δ

D(α+ δei,c)

s.t. 0 ≤ αi,c + δ ≤ C.
Setting

wc =
∑
i:yi 6=c

−xiαi,c +
∑
c:c6=yi

xiαi,c

 ,

the gradient for δ is given by
∂
∂δ [D(α+ δei,c)] = −xTi (wyi − wc) −
xTi xiδ + 1. Which is optimal at

δ = min{C − αi,c,max{−αi,c,
xTi (wyi − wc)− 1

2xTi xi
}}. (3)

3.1.1 Core Observation

We observe in the algorithm described above that optimizing with regard to αi,c will require only the
weight vectors wyi and wc. In other words, given four different classes c1, c2, c3, c4 the optimization
of the block of variables (αi, c1)i:yi=c2—according to (3)—is independent of the optimization of the
block (αi, c3)i:yi=c4 . Hence it can be parallelized. In the next section we describe how we exploit
this structure to derive a distributed optimization algorithm.

3.2 Excursus: 1-Factorization of a Graph

Assume that C is even. The core idea now is to form C
2 many disjoint blocks

(αi, c1)i:yi=c2 , . . . , (αi, cC−1)i:yi=C of variables. Each of these blocks can be optimized in par-
allel. The challenge is to derive a maximally distributed optimization schedule where each block
(αi, cj)i:yi=ck for any j 6= k is optimized.

To better understand the problem, we consider the following analogy. We are given a football league
with C teams. Before the season, we have to decide on a schedule such that each team plays any other
team exactly once. Furthermore, all teams shall play on every matchday so that in total we need
only C − 1 matchdays. This problem is the 1-factorization problem in graph theory [e.g., 14]. The
solution to this problem, illustrated in Figure 1, is as follows.

We arrange one node centrally and all other nodes in a regular polygon around the center node. At
round r, we connect the centered node with node r and connect all other nodes orthogonal to this
line. In case of an uneven number of classes, we skip the middle node and optimize it in round r r.
The pseudocode to compute the partner of a given node c at a certain round r is given in Algorithm 3
in the appendix.
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Figure 1: Illustration of the solution of the 1-factorization problem of a graph with C = 8 many nodes.
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3.3 Algorithm

Algorithm 2 Watkins-Weston

1: function SOLVE-WW(c,X,Y)
2: for c = 1..C do in parallel
3: wc ← 0
4: αc ← 0
5: for i ∈ I do
6: ki← xTi xi
7: while not optimal do
8: optimal← True
9: shuffleData()

10: for r = 1..C − 1 do
11: for c = 1..C do in parallel
12: c̃← matchClass(C, c, r)
13: if c̃ > c then
14: for i ∈ Ic do
15: solve1DimWW(i, c̃)
16: for i ∈ Ic̃ do
17: solve1DimWW(i, c)

We are now ready to formulate our algorithm
to solve WW. The algorithm, shown in Al-
gorithm 2, performs DCA over the variables
αi,c using a schedule inspired from the 1-
factorization problem in graph theory and the
coordinate updates derived in Section 3.1.

3.3.1 Convergence

It is well know that the block coordinate ascent
method converges under suitable regularity con-
ditions [e.g., 17, 18]. Our objective is contin-
uously differentiable and strictly convex. The
constraints are solely box constraints, hence the
feasible set decomposes as a Cartesian product
over the blocks. Algorithm 2 traverses the two
blocks in cyclic order. Under these conditions,
the DBCA method provably converges [e.g, 18,
Prop. 2.7.1]. Note that in practice, we observed
speedups by updating w̄ in Algorithm 2 after
each tenth of an epoche, breaking the cyclic or-
der. Further, we drop samples from the training
set of a class once they are not updated three
times in a row. Once the stopping condition holds we start again with the full set for each class. The
final run must fulfill the stopping condition traversing all samples. The blocks of coordinates are then
traversed in so-called essentially cyclic order [e.g., 17, Section 2], meaning that there exists T ∈ N
such that each block is traversed at least once after T iterations. Closer inspection of the proof in [e.g,
18, Prop. 2.7.1] reveals that the result holds also under this slightly more general assumption.

4 Experiments

This section is structured as follows. First we empirically show the soundness of our algorithms. We
present the used datasets and show the convergence and speedup properties of the proposed solutions.
Finally, we analyze the classification and time performance on the LSHTC datasets.

For the experimental setup we refer to Appendix A. Repetitions were trained on training sets with a
random order of the data (note that the training set is the same in each run; only the order of points is
shuffled, which can impact the DCA algorithm).

We compare our WW solvers with the state-of-the-art implementation contained in the ML library
Shark [19] on a series of small standard benchmarks. We observe good accordance of the results and
model sparsity of the proposed solvers and the reference implementation from the Shark toolbox,
thus confirming that our respective solver is indeed an exact solver of the WW MC-SVM problem.
The results can be found in Table C.1 in the supplement.

4.1 Datasets

Dataset # Training # Test # Classes # Features
LSHTC1-small 4,463 1,858 1,139 51,033
LSHTC1-large 128,710 34,880 12,294 381,581

LSHTC3 383,408 103,435 11,947 575,555
LSHTC2 394,754 104,263 27,875 594,158

Table 1: The used datasets and their properties.

We experiment on large classification datasets, where the number of classes ranges between 451
and 27,875. The relevant statistics of the datasets are shown in 1. The LSHTC-* datasets are high-
dimensional text datasets taken from the well-known LSHTC corpus [3]. The datasets correspond
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respectively to the released competition rounds. LSHTC2 and LSHTC3 originate from the DMOZ
corpus. The features were extracted using TF/IDF representation and we use the full feature resolution
for training.

4.2 Speedup
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2

4

6

Number of Nodes

Sp
ee

du
p

LSHTC1-small
LSHTC1-large

Figure 2: Speed-up averaged over 3 repetitions in the
number of cores.

In order to measure the speedup provided by
increasing the number of machines/cores, we
run a fix amount of iterations over the whole
LSHTC1-small and LSHTC1-large dataset. We
use 10 runs over 10 iterations with a fixed pa-
rameter C equal 1. The results are shown in
Figure 2. We observe a near linear speedup until
8 nodes. The plot indicates a sublinear (rootish)
speedup afterwards, but because of computa-
tional constraint we were not (yet) able to assess
this properly.

4.3 Timing and Classification Results

Now we evaluate and compare our solution on
the LSHTC datasets for a range of C values, i.e.
we perform no cross-validation. For comparison
we use solvers from the well-known LIBLINEAR package, namely the multi-core implementation
with L2L1-loss (OVR, [20]) and the Crammer-Singer implementation (CS, [21]). For the multi-core
solvers we use 16 cores. Table 2 shows the error and the model sparsity for the compared solutions.

OVR CS WW
Dataset: Err. Spar. Err. Spar. Err. Spar.

LSHTC1-small
log(C): -3 93.00 92.74 59.74 11.11 72.82 69.73

-2 85.36 81.54 59.74 11.13 65.34 16.44
-1 74.54 46.76 59.74 11.12 57.59 6.06
0 64.37 38.20 55.49 11.76 54.57 5.74
1 57.75 38.63 54.57 11.69 54.41 5.73

LSHTC1-large
log(C): -3 88.12 75.26 58.57 2.53 66.47 18.50

-2 85.21 45.14 58.57 2.53 60.58 4.45
-1 77.96 25.28 57.82 2.55 55.28 1.71
0 63.11 18.33 53.61 2.69 53.98 1.61
1 57.18 18.55 54.18 2.67 54.41 1.66

LSHTC3
log(C): -3 83.66 72.60 49.81 1.73 58.02 16.97

-2 75.15 46.20 49.65 1.71 50.20 4.06
-1 60.38 25.87 46.14 1.76 44.94 1.52
0 47.33 18.20 42.67 2.06 44.01 1.42
1 46.83 18.46 45.60 2.09 46.15 1.47

LSHTC2
log(C): -3 87.95 72.38 59.09 1.57 68.19 13.49

-2 85.85 45.97 59.09 1.57 62.14 3.16
-1 76.78 25.97 58.18 1.55 57.31 1.19
0 63.11 18.24 55.58 1.69 56.94 1.11
1 60.01 18.46 57.78 1.70 58.32 1.14

Table 2: Test set error and model sparsity (in %) as achieved by the OVR, CS, and WW solvers on the LSHTC
datasets. The values of the regularization parameter C are shown on log10 scale.

For all datasets the canonical multi-class formulations, i.e. CS and WW, perform significantly better
than OVR. On one hand the error is smaller. On the other hand the learned models are much sparser,
i.e. up to a magnitude. The results justify the increased solution complexity of canonical formulations.
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Figure 3: Training time averaged over 3 repetitions per C.

Comparing CS and WW, CS performs as well or slightly better at classifying. Though WW leads
to a sparser model. To the best of our knowledge this is the first comparison of these well-known
multi-class SVMs on the studied LSHTC data.

From Figure 3, we observe that the runtime of our solver outperforms the one of OVR and CS by up
to two orders of magnitude.

5 Conclusion

Based on DCA and the 1-factorization of a graph problem, we proposed an provably converging
algorithm for solving the WW MC-SVM, where the computation is distributed over the number of
classes. The experiments confirmed the correctness of the solver (in the sense of an exact solver)
and show speedup when the number of cores is increased. This speedup allowed us to train WW on
LSHTC datasets, for which results were lacking in the literature.

In the future, we want to experiment with distributing the solver not only on different cores but
different machines. Further, we would like to push our agenda forward to parralize also the MC-SVMs
by Crammer and Singer [22], Lee at al. [6], multi-class maximum margin regression [23], and the
reinforced multicategory SVM[24].
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Appendix
A Experimental Setup

For our experiments we use two different types of machines. Type A has 20 physical cpu cores, 128
GB of memory and a 10 GigaBit Ethernet network. Type B has 24 physical cpu cores and 386 GB of
memory. On type B we ran the experiments involving CS due to the memory requirements.
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Training repetitions were run on training sets with a random order of the data (note that the training
set is the same in each run; only the order of points is shuffled, which can impact the DCA algorithm).
For LIBLINEAR solvers we use the newest available version as of April 2016 with the default settings.

We implemented our solveres using OpenMP, OpenMPI, and the Python-ecosystem. In more detailed
we used [25], [26], and [27].

B 1-factorization of a Graph Algorithm

The algorithm table below complements the description of the matching algorithm in Section 3.2 of
the main text.

Algorithm 3 Solving the graph 1-factorization
problem. Indices start with one.

1: function MATCHCLASS(C,c,r)
2: if C is even and c = C then
3: return r
4: if c = r then
5: if C is even then
6: return C
7: else
8: return c
9: return mod(2r − c, C − 1)

C Validation Experiments

The following table shows the results of a validation experiment, where we compare the solution
achieved by our proposed solver with reference implementations from ML library shark [19].
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D-WW S-WW
Dataset: Err. Spar. Err. Spar.

combined
log(C): -1 19.88 100.0 19.88 100.0

0 19.51 100.0 19.51 100.0
1 19.38 100.0 19.38 100.0

glass
log(C): -1 38.10 100.0 38.10 100.0

0 19.05 100.0 19.05 100.0
1 19.05 100.0 19.05 100.0

iris
log(C): -1 6.67 100.0 6.67 100.0

0 13.33 100.0 13.33 100.0
1 13.33 100.0 13.33 100.0

letter
log(C): -1 28.25 100.0 28.26 100.0

0 29.04 100.0 29.03 100.0
1 28.92 100.0 28.93 100.0

news20
log(C): -1 15.32 51.16 15.30 49.72

0 14.80 44.74 14.80 42.70
1 15.98 45.97 15.98 43.47

rcv1
log(C): -1 11.31 26.42 11.31 23.45

0 11.52 22.93 11.52 20.12
1 12.03 23.05 12.03 20.06

satimage
log(C): -1 15.80 100.0 15.80 100.0

0 15.47 100.0 15.53 100.0
1 15.96 100.0 16.00 100.0

splice
log(C): -1 16.16 100.0 16.16 100.0

0 16.37 100.0 16.28 100.0
1 16.32 100.0 16.24 100.0

usps
log(C): -1 8.17 100.0 8.17 100.0

0 9.37 100.0 9.37 100.0
1 10.51 100.0 10.51 100.0

Table C.1: Comparison of the Shark solver (denoted S) and the proposed solver (denoted D) in terms of test set
error and model sparsity (in %) on standard benchmark data.
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