

Machine-learning-based approach to predict optical properties of black carbon (BC) at various aging stages

Baseerat Romshoo¹, Jaikrishna Patil^{2,a}, Tobias Michels¹, Thomas Müller², Marius Kloft¹, and Mira Pöhlker²

¹Leibniz Institute for Tropospheric Research, Leipzig, Germany ²Department of Computer Science, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany ^a now at: Arizona State University, Tempe, Arizona, United States

Contact: baseerat@tropos.de

MOTIVATION

Fig.1. Visualization of the various BC aggregate particles generated in this study.

PERFORMANCE OF THE ML-BASED APPROACH

ML methods used

Kernel ridge regression (KRR)

Artificial neural network (ANN)

Shortcomings of the simplified spherical assumption of BC [1,2] have led to the use of realistic fractal aggregate morphology (Fig.1) for computing the optical properties of BC.

ML-models developed from precalculated databases [3,4] such as in this study save time for the construction of detailed aggregates and mitigates high computational overhead in large-scale applications.

Fig. 2. Boxplots summarizing the mean absolute error between the predicted value (Q_{abs}, Q_{sca}, g) and their true value for different particle sizes using ML-methods KRR and ANN.

Laboratory experiments showed that the use of fractal aggregate morphology for BC reproduced their optical properties most accurately [3].

DATABASE OF BC FRACTAL AGGREGATES

Physicochemical features:

- Primary particle size (*a*)
- Number of primary particles $(N_{\rho\rho})$
- Outer volume equivalent radius (r_o)
- Inner volume equivalent radius (r_i)
- Mobility diameter (D_p)
- Fractal dimension (D_f)
- Fraction of coating $(f_{coating})$
- Total volume of particle (V_{total})
- Volume of the BC (V_{BC})
- -Volume of the coating $(V_{coating})$
- Total mass of particle (m_{total})
- Mass of the BC (m_{BC})
- Mass of the coating $(m_{coating})$

and the second second

- Mass ratio (M_R)

Primary particle size

Fractal dimension $(D_f) = 1.7$

Radiative features:

- Wavelength (λ)
- Optical efficiencies (Q_{ext/abs/sca})
- Geometric cross-section (C_{qeo})

- Optical cross-sections ($C_{ext/abs/sca}$) -Asymmetry parameter (g) - Single scattering albedo (SSA)

Table 3. Mean absolute errors of the predicted optical properties for different experiments.

Optical property	Random split		Interpolation split		Extrapolation split		Feature range
	KRR	ANN	KRR	ANN	KRR	ANN	reature range
Q_{abs}	0.0022	0.0039	0.0122	0.0287	0.0329	0.0354	0 - 2
Q_{sca}	0.0019	0.0031	0.0224	0.0466	0.0393	0.0939	0-2
g	0.0044	0.0038	0.0429	0.0289	0.0879	0.0485	0-1

Prediction efficiency

Table 4. Training time for 18526 samples and prediction time per sample in seconds.

ML model	Training time	Prediction time	
KRR	33.3s	0.0006s	
ANN	1770s	0.0005s	

DATA AND CODE AVAILABILITY

ML experiments

- Mass absorption cross-section (MAC)

REFERENCES

[1] Wu, Y., Cheng, T. and Zheng, L.: Light absorption of black carbon aerosols strongly influenced by particle morphology distribution, Environmental Research Letters, 15(9), 094051, doi:10.1088/1748-9326/ABA2FF, 2020. [2] Romshoo, B., Pöhlker, M., Wiedensohler, A., Pfeifer, S., Saturno, J., Nowak, A., Ciupek, K., Quincey, P., Vasilatou, K., Ess, M. N., Gini, M., Eleftheriadis, K., Robins, C., Gaie-Levrel, F., and Müller, T.: Importance of size representation and morphology in modelling optical properties of black carbon: comparison between laboratory measurements and model simulations, Atmos. Meas. Tech., 15, 6965-6989, https://doi.org/10.5194/amt-15-6965-2022, 2022. [3] Mackowski, D. W.: MSTM Version 3.0: April 2013, available at: http://www.eng.auburn.edu/~dmckwski/scatcodes/, 2013. [4] Smith, A. J. A. and Grainger, R. G.: Simplifying the calculation of light scattering properties for black carbon I aggregates, Atmospheric Chemistry and

Physics, 14(15), 7825–7836, doi:10.5194/acp-14-7825-2014, 2014.

SUMMARY

Machine-learning method to predict the optical properties of BC at various stages of ageing was developed under the following premises:

