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Abstract

Deep Neural Networks (DNNs) demonstrated remarkable capabilities in learning
complex hierarchical data representations, but the nature of these representations
remains largely unknown. Existing global explainability methods, such as Network
Dissection, face limitations such as reliance on segmentation masks, lack of statis-
tical significance testing, and high computational demands. We propose Inverse
Recognition (INVERT), a scalable approach for linking the learned representations
to human-interpretable concepts based on the ability to differentiate between con-
cepts. In contrast to prior work, INVERT is capable of handling diverse types of
neurons, exhibits less computational complexity, and does not rely on the availabil-
ity of segmentation masks. Moreover, INVERT provides an interpretable metric
assessing the alignment between the representation and its corresponding expla-
nation and delivering a measure of statistical significance, emphasizing its utility
and credibility. We demonstrate the applicability of INVERT in various scenarios,
including the identification of representations affected by spurious correlations,
and the interpretation of the hierarchical structure of decision-making within the
models.

1 Introduction

Deep Neural Networks (DNNs) have demonstrated exceptional performance across a broad spec-
trum of domains due to their ability to learn complex, high-dimensional representations from vast
volumes of data [1]. Nevertheless, despite these impressive accomplishments, our comprehension
of the concepts encoded within these representations remains limited. The "black-box" nature of
representations, combined with the known susceptibility of networks to learn spurious correlations
[2, 3], biases [4] and stereotypes [5] poses significant risks for the application of DNN systems,
particularly in safety-critical domains [6].

To tackle the problem of the inherent opacity of DNNs the field of Explainable AI (XAI) has emerged
[7, 8, 9]. The subfield of global explanation methods aims to explain the concepts and abstractions
learned within the DNNs representations. This is often achieved by establishing associations be-
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tween neurons within DNNs and human-understandable concepts [10, 11, 12], or by visualizing the
stimuli responsible for provoking high neural activation levels [13, 14]. Such methods demonstrated
themselves to be capable of detecting the malicious behavior and identifying the specific neurons
responsible [15, 16].

In this work, we introduce the Inverse Recognition (INVERT) 2 method for labeling neural repre-
sentations within DNNs. Given a specific neuron, INVERT provides an explanation of the function
of the neuron in the form of a composition of concepts, selected based on the ability of the neuron
to detect data points within the compositional class. Unlike previous methods, INVERT does not
rely on segmentation masks and only necessitates labeled data, is not constrained by the specific
type of neurons, and demands less computational resources. Furthermore, INVERT offers a statis-
tical significance test to confirm that the provided explanation is not merely a random occurrence.
We quantitatively the performance of our proposed approach across various datasets and models,
showcasing the practical applicability of INVERT by demonstrating how these explanations can be
leveraged to detect interesting circuits within trained models.

2 Related work

Post-hoc interpretability, a subfield within Explainable AI, focuses on explaining the decision-making
strategies of Deep Neural Networks (DNNs) without interfering with the original training process
[17, 18]. Within the realm of post-hoc methods, a fundamental categorization arises concerning the
scope of explanations they provide. Local explanation methods aim to explain the decision-making
process for individual data points, often presented in the form of attribution maps [19, 20, 21]. On the
other hand, global explanation methods aim to explain the prediction strategy learned by the machine
across the population and investigate the purpose of its individual components [22, 23].

Inspired by principles from neuroscience and cellular biology [24, 25, 26], global explainability
directs attention towards the in-depth examination of individual neurons and their functional purpose
within models [27]. This approach not only enables the explanation of the specific functions of
particular model components [16] but also extends to the identification of neurons responsible for
learning malicious concepts [15, 28] and to the analysis of spurious correlations learned by the
model [29]. Global explanation methods could be employed for the interpretation of circuits —
computational subgraphs within the model that depict the transformation of various features[30, 31].
Recently, global explanation methods have been employed in the context of Natural Language
Processing (NLP) [32, 33, 34, 35], referred to as mechanistic interpretability.

Integral to the global explainability are methods that explain the function of the specific neurons.
The Network Dissection (NetDissect) method [10, 36] was developed to provide explanations by
linking neurons to understandable concepts, based on the overlap between the activation maps of
neurons and concept masks, quantified using the Intersection over Union (IoU) metric. Addressing the
limitation that neurons could only be explained with a single concept, the subsequent Compositional
Explanations of Neurons (CompExp) method was introduced, enabling the labeling of neurons with
compositional concepts [11]. Despite their utility, these methods generally have limitations, as they
are primarily applicable to convolutional neurons and necessitate a dataset with segmentation masks,
which significantly restricts their scalability (a more comprehensive discussion of these methods can
be found in Appendix A.2). Other notable methods include CLIP-Dissect [12], MILAN [37], and
FALCON [38]. However, these methods utilize an additional model to produce explanations, thereby
introducing a new source of potential unexplainability stemming from the explainer model.

3 Method

Deep Neural Networks (DNNs) rely on neurons, the elementary units of information processing,
to establish the internal hierarchical representations that are vital for the model’s operation. Let
D � Rm; where m 2 N is the number of dimensions of data, be the data space. We use the term
neural representations to refer to a sub-function of a network that represents the computational graph
from the input of the model to the output (activation) of a specific neuron.

2The code can be accessed via the following link: https://github.com/lapalap/invert.
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De�nition 1 (Neural representation). A neural representationf 2 F is de�ned as a real-valued
functionf : D ! R; which maps the data domainD to the real numbersR. Here,F represents the
space of real-valued functions onD.

Frequently, in DNNs, particular neurons, like convolutional neurons, produce multidimensional
outputs. Depending on the speci�c needs of the application, these multidimensional functions can be
interpreted either as a set of individual scalar representations or the neuron's output can be aggregated
to yield a single scalar output, e.g. with pooling operations, such as average- or max-pooling. Unless
stated otherwise, we utilize average-pooling as the standard aggregation measure.

We de�ne aconceptas a mapping that represents the human process of attributing characteristics to
data.

De�nition 2 (Concepts). A conceptc 2 C is de�ned as a binary function:c : D �! f 0; 1g, which
maps the data domainD to the set of binary numbers. A value of1 indicates the presence of the
concept in the input, and0 indicates its absence. Here,C corresponds to the space of all possible
binary functions onD:

In practice, given the datasetD � D, concepts are usually de�ned by labels, which re�ect the
judgments made by human experts. Set of concepts,C � Cd, is de�ned as a vector ofd 2 N
individual conceptsC = [ c1; : : : ; cd] : Within the context of this work, we permit concepts to be
non-disjoint, signifying that each data point may have multiple concepts attributed to it.

The global explanation paradigm in Explainable AI aims to explain the role of each element within a
model. The comprehension of abstractions learned by neural representations fundamentally relies
on drawing comparisons with human-understandable concepts. A key step is choosing a similarity
measure betweenc 2 C and a neural representationf 2 F. Current coherence measures between
concept and neural representations are mostly limited to convolutional neurons, based on the overlap
between the representation's focal �eld and the concept's segmentation mask [10, 11] (see Appendix
A.2). However, obtaining segmentation masks can be dif�cult and these methods require substantial
computational resources due to multiple network inferences and comparisons with ground truth data.

3.1 INVERT: Interpreting Neural Representations with Inverse Recognition

In the following, we proposeInverse Recognition(INVERT), a method that seeks to explain neural
representation by identifying thecompositional concept[11] that the representation is best on
identifying inone-vs-all-otherclassi�cation. In contrast to the general Supervised Learning (SL) [39]
objective of learning representations that detect concepts, INVERT aims to discover compositional
concepts that latent representations within the network are detecting the best. By employing the non-
parametric Area Under the Receiver Operating Characteristic (AUC) measure, we can evaluate the
relationship between representations and concepts based on the representation's ability to distinguish
between the presence and absence of a concept.

De�nition 3 (AUC similarity). LetD � D be a dataset on which conceptc is de�ned. We de�ne a
similarity measured : F � C �! [0; 1] as

d(f; c ) =

P
f x j x 2D ;c(x )=0 g

P
f y j y2D ;c(y)=1 g 1[f (x) < f (y)]

j f x j x 2 D ; c(x) = 0 g j � j f y j y 2 D ; c(y) = 1 g j
; (1)

where1[f (x) < f (y)] is an indicator function that yields 1 iff (x) < f (y) and 0 otherwise.

AUC provides an interpretable measure to assess the ability of the representation to systematically
output higher activations for the datapoints, where the concept is present. An AUC of1 denotes a
perfect classi�er, while an AUC of0:5 suggests that the classi�er's performance is no better than
random chance.

Given that various concepts have different numbers of data points associated with them, for each
conceptc we can computeconcept fraction, corresponding to the ratio of data points that are positively
labeled by the concept:

T(c) =
j f x j x 2 D ; c(x) = 1 g j

j f x j x 2 D g j
: (2)
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Figure 1: Demonstration of the INVERT method (B = 1 ; � = 0 :35%) for the neuronf 33 from
ResNet18, AvgPool layer (Neuron 33), using ImageNet 2012 validation dataset. The resulting
explanations can be observed in the bottom part of the �gure, where three steps of the iterative process
are demonstrated fromL = 1 to L = 3 . It can be observed that INVERT explanations align with the
neuron's high-activating images, illustrated in the top right �gure.

Finding Optimal Compositional Explanations

Given a neural representation, denoted asf 2 F, and a set of conceptsC � C, the objective of
INVERT is to identify the conceptc� 2 C such thatc� = arg max d(f; c ). However, due to the
inherent ability of representations to detect shared features across various concepts explaining a
representation with a single concept may not provide a comprehensive explanation. To surmount this
challenge, we adopt the existingcompositional conceptsapproach [11], and we augment the set of
data-induced concepts by introducing new generic concepts, as a logical combination of existing
ones. These logical forms involve the composition ofAND, OR, andNOT operators, and they are
based on concepts fromC:

De�nition 4 (Compositional concept). Given a collection of conceptsC; a compositional concept'
is a higher-order interpretable function that mapsCto a new, compositional concept:

' : Cd �! C: (3)

Evaluating the performance of all conceivable logical forms across all of thed concepts fromCis
generally computationally infeasible. Consequently, the set of potential compositional concepts� L is
restricted to a form of predetermined lengthL , whereL is a parameter of the method. The objective
of INVERT, in this context, can be reformulated as:

' � = arg max
' 2 � L

d(f; ' (C)) : (4)

To determine the optimal compositional concept that maximizes AUC, we employ an approach
similar to that used in [11], utilizing Beam-Search optimization. Parameters of the proposed method
include predetermined lengthL 2 N, the beam sizeB 2 N: Additionally, during the search process
explanations could be constrained to the conditionT(' (C)) 2 [�; � ], where0 � � < � � 0:5.
In Section 4.1, we further demonstrate that by imposing a such constraint on the concept fraction
resulting explanations could be made more comprehensive. We refer to the standard approach when
� = 0 ; � = 0 :5. In our experiments, unless otherwise speci�ed, the parameter� is set to0:5.
Additional details and a description of the algorithm can be found in Appendix A.3.
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Figure 2: The �gure illustrates the contrast between apoor explanation (on the left) and INVERT
explanations withL = 1 and varying parameter� , for neuron 592 in the ViT B 16 feature-extractor
layer. The INVERT explanations were computed over the ImageNet 2012 validation set. The �gure
demonstrates that as the parameter� increases, the concept fractionT also increases, indicating
that more data points belong to the positive class. Furthermore, this �gure showcases the proposed
method's ability to evaluate the statistical signi�cance of the result. The poor explanation fails the
statistical signi�cance test (double-sided alternative) with a p-value of 0.35, while all explanations
provided by INVERT exhibit ap < 0:005.

Figure 1 illustrates the INVERT pipeline for explaining the neuron from ResNet18 Average Pooling
layer [40]. For this, we employed the validation set of ImageNet2012 [41] as the datasetDI in the
INVERT process. This subset contains 50,000 images from 1,000 distinct, non-overlapping classes,
each represented by 50 images. Notably, since ImageNet classes are intrinsically linked to WordNet
[42], we extracted an additional 473 hypernyms, or higher-level categories, and assigned labels
for these overarching classes. In Figure 1 and subsequent �gures, we use beige color to represent
individual ImageNet classes and orange color to represent hypernyms. In the density plot graphs,
the orange density illustrates the distribution of data point activations that belong to the explanation
concept, while blue represents the distribution of activations of data points corresponding to the
negation of the explanation.

Statistical signi�cance

IoU-based explanations, such as those provided by Network Dissection, often report small positive
IoU scores for the resulting explanations. This raises concerns about potential random coincidences.
The AUC value is equivalent to the Wilcoxon-Mann-Whitney statistic [43] and can be interpreted as
a measure based on pairwise comparisons between classi�cations of the two classes. Essentially, it
estimates the probability that the classi�er will rank a randomly chosen positive example higher than
a negative example [44]. Given the conceptc, this connection to the Mann–Whitney U test allows
to test and report thep-value corresponding to the hypothesisH 0 : d(f; c ) = 0 :5 (against double-,
or one-sided alternative), aiding in preventing misinterpretations caused by randomness, thereby
enhancing the reliability of the explanation process, as illustrated in the Figure 2. In all subsequent
�gures, the explanations provided by INVERT achieve statistical signi�cance (against double-sided
alternative) with a standard signi�cance level (0.05).

4 Analysis

In this section, we provide additional analysis of the proposed method, including the effect of
constraining the concept fraction of explanations and comparison of the INVERT to the prior
methods.

4.1 Simplicity-Precision tradeoff

The INVERT method is designed to identify the compositional concept that has the highest AUC
similarity to a given representation. However, the standard approach neglects to account for the class
imbalance between datapoints that belong and do not belong to a particular concept, often leading
to precisebut narrowly applicable explanations due to the small concept fraction. To mitigate this
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Figure 4: Impact of the parameter� and formula lengthL on the resulting explanations. The �rst
row of the �gure shows the average AUC of optimal explanations for 50 randomly sampled neurons
from the feature-extractor part of each one of the four ImageNet pre-trained models, conditioned by
different values of parameter� in different colors. These graphs indicate that neurons generally tend
to achieve the highest AUC for one individual class withL = 1 and� = 0 . The second row presents
the distribution of AUC scores alongside the distribution of concept fractionsT for the INVERT
explanations of lengthL = 5 , for each model. Here, we can observe a clear trade-off between the
precision of the explanation in terms of AUC measure and concept sizeT:

issue, we can modify the INVERT process to work exclusively with compositional concepts where
the fraction equals or exceeds a speci�c threshold, represented as� .

Figure 3: Three different INVERT explana-
tions, computed by adjusting the parameter
� for the Neuron 88 in ResNet18 AvgPool
layer. Higher values of this parameter lead
to broader explanations, albeit at the cost of
precision, thus resulting in a lower AUC. The
visualization of the WordNet taxonomy for
the hypernyms is provided in the Appendix 3.

For this experiment, the INVERT method was uti-
lized on the feature extractors of four different mod-
els trained on ImageNet. These models include
ResNet18 [40], GoogleNet [45], Ef�cientNet B0 [46],
and ViT B 16 [47]. In this experiment, we exam-
ined 50 randomly chosen neurons from the feature-
extractor layer of each model. We utilized the Im-
ageNet 2012 validation datasetDI , which was out-
lined in the previous section, to generate INVERT
explanations withB = 3 varying the explanation
length L between1 and 5, and parameter� , re-
sponsible for the constraining the concept fraction,
� 2 f 0; 0:002; 0:005; 0:01g:

The experiment's results are depicted in Figure 4.
It can be observed that for all models, there is a
simplicity-precision tradeoff. The explanations with
the highest AUC generally consist of only one indi-
vidual class with a low concept fraction, and these are
achieved when� = 0 . However, it can also be seen
that by constraining the concept fraction and increas-
ing the explanation lengthL , we can improve AUC
scores while still maintaining the desired concept
fraction. Still, this indicates that more generalized,
broader explanations come at the cost of a loss in
precision in terms of the AUC measure. Figure 3
demonstrates how the change of parameter� affects
the resulting explanation.

4.2 Evaluating the Accuracy of Explanations

While it's generally challenging to obtain ground-truth explanations for the latent representations
in Deep Neural Networks (DNNs), in Supervised Learning, the concepts of the output neurons are
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Table 1: A comparison of explanation accuracy between NetDissect and INVERT. The accuracy is
computed by matching these identi�ed classes with the ground truth labels.

Model Dataset NetDissect INVERT

MaskRCNN ResNet50 FPN MS COCO 95.06% 98.77%
FCN ResNet50 MS COCO 95.24% 95.24%

ResNet18 ImageNet 19.2% 73.2%
GoogleNet ImageNet 19.7% 82.2%
DenseNet161 ImageNet 19.1% 86.9%

de�ned by the speci�c task. In the subsequent experiment, we assessed the performance of INVERT
and Network Dissection in accurately explaining neurons when such ground truth is known.

For this experiment, we employed 5 different models: 2 segmentation models and 3 classi�cation
models. For image segmentation, we employed MaskRCNN ResNet50 FPN model [48], pre-trained
on MS COCO dataset [49] and evaluated on a subset of 24,237 images of MS COCO train2017,
containing 80 distinct classes, and FCN ResNet50 model [50], pre-trained on MS COCO, and
evaluated on a subset of MS COCO val2017, limited to the 20 categories found in the Pascal
VOC dataset [51]. For classi�cation models we employed ImageNet pre-trained ResNet18 [40]
DenseNet161 [52], and GoogleNet [53], with 1,000 output neurons, each neuron corresponding to
the individual class in the ImageNet dataset.

Figure 5: Comparing the computational
cost of INVERT with Compositional
Explanations of neurons (compexp) in
hours with varying formula lengths.

The outputs from the segmentation models were converted
into pixel-wise con�dence scores. These scores were ar-
ranged in the format[NB ; Nc; H; W ]; whereNB repre-
sents the number of images in a batch, andNc signi�es
the number of classes. Each value indicates the likelihood
of a speci�c pixel belonging to a particular class.

All the classi�cation models that were used had 1,000 one-
dimensional output neurons. The evaluation process for
both explanation methods was carried out using a subset of
20,000 images from the ImageNet-2012 validation dataset.
For the Network Dissection method, which necessitates
segmentation masks, these masks were generated from the
bounding boxes included in the dataset. Both Network
Dissection and INVERT methods were implemented using
standard parameters.

Table 1 presents the outcomes of the evaluation process.
It is noteworthy that INVERT exhibits superior or equiv-
alent performance to Network Dissection across all tasks.
Importantly, INVERT can accurately identify concepts
in image segmentation networks using only the labels of
images, in comparison to the Network Dissection method
that uses segmentation masks.

Computational cost comparison

Methods such as Network Dissection and Compositional Explanations (CompExp) of neurons have
been observed to exhibit computational challenges mainly due to the operations on high-dimensional
masks. While CompExp and INVERT share a beam-search optimization mechanism, the proposed
approach allows for less computational resources since logical operations are performed on binary
labels, instead of masks. Figure 5 showcases the running time of applying INVERT and Compositional
Explanations of neurons for the 2048 neurons in layer 4 of the FCOS-ResNet50-FPN model [54]
pre-trained on the MS COCO dataset [49] on a singe Tesla V100S-PCIE-32GB GPU. The time
comparison of varying formula lengths demonstrates the advantage of INVERT being more effective
computationally, which leads to reduced running time and computational costs.
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