
Published in Transactions on Machine Learning Research (04/2023)

TimeSeAD: Benchmarking Deep Multivariate Time-Series
Anomaly Detection

Dennis Wagner∗ dwagner@cs.uni-kl.de
RPTU Kaiserslautern-Landau

Tobias Michels∗ tmichels@cs.uni-kl.de
RPTU Kaiserslautern-Landau

Florian C.F. Schulz florian.cf.schulz@tu-berlin.de
TU Berlin

Arjun Nair naira@rptu.de
RPTU Kaiserslautern-Landau

Maja Rudolph maja.rudolph@us.bosch.com
Bosch AI

Marius Kloft kloft@cs.uni-kl.de
RPTU Kaiserslautern-Landau

Reviewed on OpenReview: https: // openreview. net/ forum? id= iMmsCI0JsS

Abstract

Developing new methods for detecting anomalies in time series is of great practical signif-
icance, but progress is hindered by the difficulty of assessing the benefit of new methods,
for the following reasons. (1) Public benchmarks are flawed (e.g., due to potentially er-
roneous anomaly labels), (2) there is no widely accepted standard evaluation metric, and
(3) evaluation protocols are mostly inconsistent. In this work, we address all three issues:
(1) We critically analyze several of the most widely-used multivariate datasets, identify a
number of significant issues, and select the best candidates for evaluation. (2) We introduce
a new evaluation metric for time-series anomaly detection, which—in contrast to previous
metrics—is recall consistent and takes temporal correlations into account. (3) We analyze
and overhaul existing evaluation protocols and provide the largest benchmark of deep mul-
tivariate time-series anomaly detection methods to date. We focus on deep-learning based
methods and multivariate data, a common setting in modern anomaly detection. We pro-
vide all implementations and analysis tools in a new comprehensive library for Time Series
Anomaly Detection, called TimeSeAD1.

1 Introduction

Anomaly detection (AD) on time series is a fundamental problem in machine learning and significant in
various applications, from monitoring patients and uncovering financial fraud to detecting faults in manufac-
turing and critical process conditions in chemical plants (Ruff et al., 2021). The aim in AD is to automatically
identify significant deviations to the norm—so-called anomalies. There are two principal approaches to AD
on time series: Either an anomaly detector assigns a score to each time step separately (point-wise) or the
entire time series (globally). This work focuses on unsupervised AD in the point-wise setting, which has

∗These authors contributed equally.
1https://github.com/wagner-d/TimeSeAD

1

https://openreview.net/forum?id=iMmsCI0JsS
https://github.com/wagner-d/TimeSeAD

Published in Transactions on Machine Learning Research (04/2023)

become the standard in the literature and can easily be adapted to the global environment by aggregating the
local labels. Moreover, point-wise methods lend themselves naturally to real-time prediction and anomaly
localization, which are of practical importance in many applications.

Evaluating the accuracy of an anomaly detector for time series is not straightforward. Most authors com-
monly rely on point-wise metrics, particularly the F1-score (Choi et al., 2021; Audibert et al., 2022). However,
by definition, point-wise metrics ignore any temporal dependencies in time series and, consequently, fail to
distinguish predictive patterns, such as early and late predictions. The few prior attempts to introduce spe-
cialized evaluation metrics (Lavin & Ahmad, 2015; Tatbul et al., 2018) for time-series AD have not caught on
in the community, primarily due to their complexity and the counterintuitive results they can produce (Huet
et al., 2022). We explicitly discuss existing metrics for time series anomaly detection in Section 3.2. Another
major problem in time-series AD is the datasets. Recently, Wu & Keogh (2021) have exposed significant flaws
in many widely used univariate datasets, ranging from surface-level issues (such as mislabeled points and
an unrealistic density of anomalies) to deep-rooted problems (such as positional bias and trivial features).
These problems raise doubts about the reliability of existing evaluations obscuring the actual progress in the
field. The analysis by Wu & Keogh (2021) does not address all critical aspects of time-series AD, such as
distributional shift. Furthermore, many modern applications of AD reside in the multivariate regime. To
the best of our knowledge, this is the first comprehensive analysis of many popular multivariate times-series
AD datasets. The third crucial problem impeding progress in the field is the diverse and often incompati-
ble evaluation protocols across publications. Many recent methods compare to previously reported results
while using different evaluation protocols. Differences range from the way methods are trained, optimized,
tuned, or evaluated, making the results inherently incomparable. The general lack of detailed specification
of the evaluation protocol and methods, and official implementations additionally burden fair comparisons.
Furthermore, common to many evaluations, some practices have already been proven to introduce bias and
skew the results in favor of random predictions (Kim et al., 2022; Doshi et al., 2022).

The distinct flaws of datasets, metrics, and evaluation protocols are pervasive problems subverting evaluations
in time-series AD, making it hard to determine the actual progress in the field. This work examines the most
popular multivariate time-series datasets, evaluation metrics, and protocols in detail and proposes a general
evaluation framework to address the identified problems. We have created a detailed, extendable, and user-
friendly library, where we implemented 28 deep-learning based multivariate time-series AD methods. This
library is an unprecedented asset enabling researchers to quickly and reliably develop, test, and evaluate new
methods. It provides a set of tools to analyze datasets and methods alike. In our evaluation, we focus entirely
on multivariate datasets and deep-learning based methods, a common setting in modern applications (Darban
et al., 2022). Multivariate data are more complex than univariate data, allowing for complex dependencies
between features, and deep learning based methods have been shown to outperform shallow baselines on
multivariate data in multiple settings (LeCun et al., 2015).

Our main contributions are the following:

• We conduct a thorough analysis of the most widely used datasets, metrics, and evaluation
protocols for multivariate time-series AD, revealing significant problems with all three.

• We propose a new evaluation metric that is provable recall consistent (a property we define in
section Section 3.2) and empirically provides a reasonable ordering of evaluated methods.

• We present the largest comprehensive benchmark so far for multivariate time-series AD, com-
paring 28 deep-learning methods on 21 datasets.

2 Related Work

Several papers have attempted to summarize the vast number of time-series AD approaches (Darban et al.,
2022). However, most prior work focuses either on a subclass of network architectures (Lindemann et al.,
2021; Lee et al., 2021; Wen et al., 2022) or a specific application domain and methods specifically applied
therein (Luo et al., 2021). Others discuss multiple methods and concepts in a high-level overview (Blázquez-
García et al., 2021), with a strong focus on application. Choi et al. (2021) and Audibert et al. (2022) use

2

Published in Transactions on Machine Learning Research (04/2023)

point-wise metrics to selectively evaluate nine and 14 methods, respectively, on three and five datasets, in
which we identified several problems (see Section 3.1). Similarly, Lai et al. (2021) evaluate nine methods on
four other datasets, one of which is not available anymore, using point-wise methods. Schmidl et al. (2022)
evaluate a large collection of more than 20 deep and several shallow methods primarily on univariate or low-
dimensional datasets. Their evaluation relies on a slow (quadratic in time) implementation of time-series
precision and recall (Tatbul et al., 2018). Consequently, they had to exclude results where the computation
took too long. Other libraries, such as (Bhatnagar et al., 2021), mainly focus on shallow or basic deep
methods.

We expand the work of Wu & Keogh (2021) to analyze multivariate datasets. They thoroughly analyzed
several of the most popular univariate time-series datasets, identified multiple flaws, and concluded that
many datasets do not guarantee a fair evaluation of AD algorithms. Following their work, we find several
similar problems with the most widely used multivariate time-series datasets.

Overcoming the inherent problems of point-wise metrics on time-series data is not an easy task. Huet et al.
(2022) provide an overview of existing attempts and introduce a metric based on the distance of predicted
anomaly windows to the nearest anomaly. However, they report their results on datasets in which we identify
several problems. Others modify the predictions before evaluation (Xu et al., 2018; Scharwächter & Müller,
2020; Kim et al., 2022) or consider only the beginning of anomaly windows (Doshi et al., 2022). Some metrics
are clearly biased towards extreme cases of anomaly detectors (Hundman et al., 2018). Lavin & Ahmad
(2015) introduced the first metric to directly address the problems of point-wise evaluations by penalizing
late predictions in anomaly windows. With its numerous hyperparameters, the metric was too complex and
variable to be widely adapted (Xu et al., 2018). Tatbul et al. (2018) proposed time-series precision and
recall, a generalization of previous concepts in many ways. For a long time, the only publicly available
implementations were too slow and cumbersome to use in practice. Lastly, Garg et al. (2021) propose a
variation of time-series precision and recall that ignores any overlap between prediction and anomalies in
the recall.

3 The Illusion of Progress

In this section, we uncover several issues that make evaluations in (multivariate) time-series AD unreliable
and thus create an illusion of progress in the field. Our analysis first examines some of the most commonly
used datasets. These datasets are the backbone of time-series AD evaluation and have been used in virtually
all major comparisons in the field (Schmidl et al., 2022; Garg et al., 2021; Choi et al., 2021; Jacob et al., 2020).
Our analysis reveals several significant flaws in these datasets. Second, we investigate the shortcomings of
frequently used evaluation metrics, particularly the point-wise F1-score and its adaptations. Lastly, we
examine the inconsistencies and other problems within established evaluation protocols.

3.1 Datasets

A good dataset for benchmarking deep time-series AD methods should be as unbiased as possible and adhere
to the underlying assumptions of AD (Ruff et al., 2021), but should also be complex enough to represent a
significant challenge. It is impossible to determine exact statistics of a good benchmark dataset, but we can
look at similar settings to gain some intuition. Time-series data contain strong temporal dependencies similar
to spatial dependencies in images, where deep-learning based methods have outclassed most traditional
approaches [cite]. Thus, a good benchmark dataset should contain a similar amount of samples to facilitate
the training of deep models. To present a significant challenge, a good benchmark dataset should contain
enough features to allow for complex inter-feature dependencies. In the following, we highlight several
problems found in time-series datasets and summarize our findings on SWaT (Goh et al., 2016), WADI
(Ahmed et al., 2017), SMAP, and MSL (Hundman et al., 2018).

Anomaly density refers to the fraction of anomalies in the test set. Anomalies are usually considered rare
deviations, and their density in the test set should reflect this characterization. However, except for WADI,
all considered datasets contain more than 10% anomalies, which might already be too high to be considered
rare deviations from the norm.

3

Published in Transactions on Machine Learning Research (04/2023)

Positional bias is introduced when the distribution of the relative positions of anomalies deviates signifi-
cantly from a uniform distribution. For example, anomalies can be biased towards the end when an anomaly
means a fatal error for the generating process, known as run-to-failure bias (Wu & Keogh, 2021). Algorithms
accounting for this shift have an immediate advantage over any competitors. To investigate this bias, we
examine the relative positions of anomalous time steps in each time series in the test sets and find clear
evidence of positional bias in both SMAP and MSL (for example, see Figure 1a).

(a) Relative anomaly positions (b) Anomaly window lengths (c) Normal feature distribution

Figure 1: (a) The relative positions of anomalies in the test set of SMAP show clear positional bias towards the latter
half of the time series. (b) The distribution of anomaly window lengths in SWaT shows the existence of exceptionally
long anomaly windows. (c) Comparing the distribution of normal time steps of feature AIT201 in SWaT reveals clear
signs of distributional shift.

Long anomalies can introduce problems in the evaluation. Some methods may rely on normal context in
each window to predict subsequent anomalies and are thus at a disadvantage when long anomaly windows
occur. Long anomalies also interact with adapted evaluation protocols, which we discuss in Section 3.3.
Although not inherently negative, both effects should be kept in mind when using data containing long
anomaly windows for evaluation. We found that the vast majority of anomalous time steps in all datasets
belong to one or several long anomalies (for example, see Figure 1b).

Constant features appear in all considered datasets. Features that are constant only in the training or test
set are generally desirable. However, some datasets contain features that remain constant across training
and test set. While such features may be valuable in practical applications, they add unnecessary complexity
to the benchmark.

Distributional shift occurs when the underlying process that generated normal training and test data is
not the same. It breaks one of the fundamental assumptions of AD. For several datasets, we can examine
distributional shift by simply inspecting their feature means and standard deviations (for example, see
Figure 1c). Furthermore, anomalies should be labeled consistently where they occur in the data to ensure an
unbiased and fair evaluation. Effects that show in a sensor only after the labeled anomaly (for example, see
Figure 2a) pose an impossible problem for any anomaly detector. This holds especially true for long-lasting
changes in the data. Some anomalies seem to permanently change the distribution of the system, causing
clear distributional shift (for example, see Figure 2b).

3.1.1 Analyzing SWaT, WADI, SMAP, and MSL

In the following, we summarize our analysis of four of the most widely used datasets for multivariate time-
series AD. We provide descriptions, detailed examples, and discussions for all datasets in Appendix B.

SWaT and WADI contain the clearest examples of delayed and long-term effects in the data. In both
datasets, the distribution changes drastically in the second half of the test set. Additionally, we found
exceptionally long anomalies in both datasets, especially in SWaT, where one anomaly spans nearly 36,000
time steps. Even if the former issue was addressed by experts, this could introduce even more anomalous time
steps, longer anomaly windows, and positional bias. Thus we conclude that evaluations on these two datasets
are highly unreliable and that these datasets are not suited for multivariate time-series AD evaluation.

4

Published in Transactions on Machine Learning Research (04/2023)

(a) 2_P_004_SPEED (b) 2A_AIT_002_PV

Figure 2: Two features from the test set of WADI show where anomalies seem to cause (a) delayed or (b) long-term
effects in the data. Red-shaded areas are ground truth anomalies. The feature in (b), normalized to range in [0, 1]
on the training set, jumps to unprecedented values on the test set.

SMAP and MSL contain time series with one feature representing a sensor measurement, while the rest
represent binary encoded commands. The command features are often constant, particularly in sections
where anomalies occur. Furthermore, since several sensors have been used to construct the dataset, each
time series in both datasets should be considered independently. SMAP contains a clear positional bias
towards the end, and both seem to contain significant distributional shifts caused by anomalies. Thus, we
conclude that both MSL and SMAP are also not suited for general time-series AD evaluation.

3.2 Metrics

An anomaly detector produces an anomaly score for each time step in a time series. The higher the score
at time t, the more confident the detector is that the point at that time is an anomaly. Anomalies are
then predicted by thresholding these scores. Given predictions and labels, an evaluation metric produces a
score based on their agreement. Different algorithms can then be compared based on the scores produced
by their predictions. A good metric should not be unintentionally biased towards a specific group of bad
algorithms, for example random predictions. Evaluation on time-series data is complicated due to the
temporal dependencies between time steps, as anomalies often appear in intervals and two predictors might
differ in the pattern of their predictions inside these anomaly windows. In the following, we examine the
shortcomings of point-wise metrics and existing attempts to explicitly include the temporal dependency in
evaluation metrics.

Predictive patterns describe the patterns of the predictions of an anomaly detector. Two methods making
the same amount of predictions can still differ significantly depending on their predictive pattern. Predictive
patterns matter for separating early and late or consistent and fragmented predictions, and their differences
should be reflected in the metric used to compare them. Many proposed metrics ignore the predictive
patterns for their computation. This is particularly true for point-wise metrics that consider each prediction
separately. As a consequence, any two methods that differ only in a predictive pattern on anomalies are
indistinguishable for any point-wise metric (see Figure 3a as an example). However, most papers rely on the
point-wise F1-score for their evaluation, oftentimes reported alongside precision and recall.

Recall consistency refers to the monotonicity of point-wise recall with respect to the threshold of the
evaluated anomaly detector, that is, the point-wise recall is monotonically decreasing with an increasing
threshold. We argue that any derived metric replicating the intuition of recall should be recall consistent
to avoid unexpected and unintuitive behavior. Such behavior can even lead to problems when computing
aggregated metrics that assume recall consistency. Time-series precision and recall (Tatbul et al., 2018)
is an attempt to incorporate predictive patterns in the computation of recall and precision. Consider the
set of anomaly windows in a dataset A, the set of predicted windows P, and the set of predicted windows
overlapping with a set PA = {P ∈ P | |A ∩ P | > 0}. Then time-series recall is defined as

TRec(A, P) = 1
|A|

∑
A∈A

α1(|PA| > 0) + (1 − α)γ(|PA|)
∑
P ∈P

∑
t∈P ∩A

δ(t − min A, |A|)∑
t∈A

δ(t − min A, |A|)

 , (1)

5

Published in Transactions on Machine Learning Research (04/2023)

(a) Two predictions of equal size with distinct predictive pat-
terns on an anomaly.

(b) Anomaly score and predictions P1, P2, where only the
larger persists for both thresholds t1, t2.

Figure 3: (a) A point-wise metric cannot distinguish between two methods that differ only in their predictive pattern
on anomalies. (b) Counterintuitively, T Rec with a constant bias and γ(x) = x−1 increases when the threshold
increases from t1 to t2.

with weight 0 ≤ α ≤ 1, monotone decreasing cardinality function γ with γ(1) = 1, and bias function
δ ≥ 1. This metric is not recall consistent in general, in particular for the recommended default parameter
choices (γ(x) = x−1) (Tatbul et al., 2018). Increasing the threshold and removing an entire window from
the predictions will increase γ(|PA|) which may “override” the decrease in the following sum that quantifies
the overlap if γ is not chosen carefully. For example, consider two disjoint predictions P1, P2 ⊂ A ∈ A for
a threshold λ, such that

∑
t∈P1∩A δ(t − min A, |A|) >

∑
t∈P2∩A δ(t − min A, |A|). Then, if there exists a

threshold greater than λ such that P1 is kept intact while P2 vanishes, TRec increases (see Figure 3b for
illustration).

Implicit bias is at the core of any evaluation metric defining the ideal behavior to strive for. Thus each
metric needs to be carefully designed, to not encourage unwanted behavior by accident or introduce conflicting
goals. Consider the precision associated with TRec that is computed by interchanging the rolls of anomalies
and predictions, i.e., TPrec(A, P) = TRec(P, A). This choice encourages algorithms to predict many small
anomaly windows, such that the negative impact of falsely anomalous predictions is diminished since all
predictions are weighted equally. The resulting behavior conflicts with the choice of a decreasing cardinality
function, which encourages the opposite.

Compensating flaws generally introduces further, often subtle, bias into the evaluation. For many applica-
tions, precise predictions are important, for example, where false positives cause severe overhead. Introducing
soft boundaries for anomalies to account for predictions only nearly missing ground truth anomaly windows
erodes the required preciseness of predictions. Depending on the particular setting, such leeway might be
desired behavior, but even then should be inserted conscious of its implicit biases. In a well-labeled dataset,
each anomaly window should indicate where alarms are expected and acceptable. Thus, such issues should
not be addressed in the metric, but rather in the dataset.

3.2.1 Analyzing evaluation metrics for time series

We discuss and analyze recent evaluation metrics for time-series data with respect to the identified flaws.

Soft-boundary metrics, such as distance-based precision and recall Huet et al. (2022) and range-based
volume under surface metrics by Paparrizos et al. (2022), compensate for predictions outside of anomaly
windows by relying on the distance between predictions and anomalies or extending anomaly windows. While
the former introduces implicit bias on correct predictions towards the center of anomaly windows and makes
no explicit distinction between predictions before or after anomalies, the latter carries over the indifference to
predictive patterns of point-wise methods. Similarly, Scharwächter & Müller (2020) extend anomaly window
and predicted windows in the computation of point-wise precision and recall, respectively.

Early prediction metrics, such as the NAB score (Lavin & Ahmad, 2015) and sequence precision delay
(Doshi et al., 2022), only consider the first anomalous prediction after the beginning of an anomaly win-
dow. This emphasis on early predictions is largely motivated by specific applications, where early detection

6

Published in Transactions on Machine Learning Research (04/2023)

of anomalies is vital. However, by ignoring the remaining predictions, these metrics cannot distinguish
predictive patterns and thus distinguish subtle differences between methods.

Time-series precision and recall and their derived metrics solve most problems of point-wise metrics
and provide an intuitive set of adjustable parameters. However, they suffer from recall inconsistency and
conflicting implicit bias. Even though clearly flawed, they constitute a reasonable attempt to include the
temporal structure of time series in an evaluation metric. Other attempts to adjust precision and recall
for time series contain clear bias towards constant predictors (Hundman et al., 2018) or fail to account for
predictive patterns similar to point-wise metrics (Garg et al., 2021).

3.3 Evaluation Protocol

An evaluation protocol comprises specifications of how the experiments are conducted, including the prepro-
cessing of datasets, feature elimination, and parameter selection heuristics. Consistent evaluation protocols
are necessary to guarantee fair comparison across different models. In the following, we outline some of the
problems we identify in and around evaluation protocols in the literature.

Point adjustment is a technique modifying the predictions to complement the point-wise F1-score. Any
anomaly window with at least one correctly predicted time step is considered predicted correctly. However,
even random methods have a decent chance to predict at least one point in larger anomaly windows, where
they can easily reach the performance of most complex methods or even outperform them (Kim et al.,
2022; Doshi et al., 2022). Despite these flaws, this technique was adopted by many papers (Su et al., 2019;
Audibert et al., 2020; Zhao et al., 2020; Zhang et al., 2021; Xiao et al., 2021; Chen et al., 2021; Wang et al.,
2021; Challu et al., 2022; Hua et al., 2022; Chambaret et al., 2022; Zhang et al., 2022b;a). In light of our
discussion on evaluation metrics and their apparent flaws, this technique should generally be abandoned for
evaluations of time-series AD.

Implementations and specifications provided by the original authors are an important tool to ensure
reproducibility. This becomes especially important when the evaluation protocols need to be adapted, or the
methods need to be evaluated on new datasets or with different metrics. However, several works do not specify
their evaluation protocol, hyperparameters, and architecture in enough detail to reproduce their results and
do not publish any source code that contains them (e.g., Homayouni et al., 2020; Pereira & Silveira, 2018). As
the employed evaluation protocol can significantly affect the final performance, a functioning implementation
should be completely disclosed alongside an evaluation.

Other potential inconsistencies can be found across multiple evaluation protocols. Some papers seem
to tune the model parameters on the test set, introducing more bias into the evaluation (Zhan et al.,
2022). Others report aggregated metrics over datasets consisting of samples from different distributions
or aggregated over multiple datasets (Su et al., 2019). Such metrics can be of interest in their own right,
however, without a clear definition of how these aggregated values are computed or additional analysis,
these evaluations often lack clarity, comparability, and reproducibility. We encountered many more minor
inconsistencies, highlighting the importance of official implementations and thorough specifications.

4 TimeSeAD: Benchmarking Deep Multivariate Time-Series AD

In this section, we propose how to benchmark time-series AD methods in a way that mitigates the issues
discussed in Section 3. We discuss the strengths and weaknesses of two recent datasets, and how their flaws
can be mitigated. Further, we introduce modified versions of time-series precision and recall, to alleviate the
biases of the precision and ensure recall consistency of the recall. Finally, we discuss our evaluation protocol
and implementation.

4.1 Datasets

In the previous section, we uncovered flaws in several commonly used benchmark datasets, making them
unfit for evaluation. However, there are also datasets we find more suited for benchmarking, namely SMD
(Su et al., 2019) and Exathlon (Jacob et al., 2020).

7

Published in Transactions on Machine Learning Research (04/2023)

SMD contains 28 time series generated from different processes and thus comprises 28 datasets with 38
features each. Some of its datasets suffer from distributional shift and have been removed from evaluations
in the past (Li et al., 2021b). Detecting distributional shift in time-series data is no trivial task in itself.
Therefore, we rely on manual inspection of all datasets in this study. We exclude several datasets from the
final evaluation, where we suspect delayed or long-term effects caused by anomalies, and only report those
results in Appendix E. In total, we remove 13 datasets leaving 15 datasets for evaluation.

Exathlon comprises eight datasets collected from applications run on a cluster. The time series in Exathlon
suffer from missing values, which the creators suggest be replaced with default values. This inadvertently
injects unlabeled anomalies in the data, where the default values follow a different distribution. Instead, we
replace any missing values with the respective preceding value. We omit two applications, one, for which
we identify a severe distributional shift, and one with a too-small test set, leaving six datasets. Overall, we
find several more instances of possible delayed effects and distributional shift, which might be attributed to
background effects. Nonetheless, we strongly encourage further careful inspection by application experts,
especially to address the high anomaly density in all datasets in Exathlon.

All datasets in SMD and Exathlon are far from ideal benchmark datasets. Considering each time series
individually leaves each dataset with fewer samples compared to other datasets, and the high anomaly
density in Exathlon is worrying. While not perfect, these datasets are significantly better alternatives to
SWaT, WADI, SMAP, and MSL for evaluating time-series AD methods.

4.2 Metrics

In Section 3.2 we discussed the potential and shortcomings of TRec and TPrec. We propose new default
parameters for TRec and a variation of TPrec to address their flaws. Let us first note the discrepancy
between the two terms in Equation (1). The first term counts the number of anomaly windows for which
at least one point was predicted correctly. In contrast, the second term is entirely concerned with the
predictive structure within each anomaly window. Since the first term is completely oblivious to the size
of the anomalies, the range of both terms could vary wildly between tasks, and the terms would need to
be balanced for each task individually. Furthermore, the second term already implicitly acknowledges the
existence of anomalies in their overlap. Thus, we suggest using α = 0.

To prevent unintuitive results caused by recall inconsistency, we further require the cardinality function
to guarantee recall consistency. Thus, we define a suitable class of cardinality functions for which recall
consistency always holds.

Theorem 1 TRec is recall consistent for any cardinality function of the form

γ(1, A) = 1, γ(n, A) = max
0<m<n

∑
t∈A

δ(t − min A, |A|) − n + m∑
t∈A

δ(t − min A, |A|) γ(m, A).

Proof - Sketch2: It is straight-forward to verify the monotonicity of γ. Thus, it suffices to show the recall-
consistency of the resulting TRec. To ensure monotonicity of TRec, we only need to proof the monotonicity
for each individual ground-truth anomaly window. Consider the predictions PA, P ′

A on an anomaly A ∈ A
for two thresholds λ < λ′, such that the cardinality of the predictions decreases with an increasing threshold,
i.e. |PA| > |P ′

A|. Then the term in Equation (1) corresponding to A is non-increasing, if the following holds∑
P ∈P′

A

∑
t∈P ∩A

δ(t − min A, |A|)∑
P ∈PA

∑
t∈P ∩A

δ(t − min A, |A|) ≤

∑
t∈A

δ(t − min A, |A|) − (|PA| − |P ′
A|)∑

t∈A

δ(t − min A, |A|) ≤ γ(|PA|, A)
γ(|P ′

A|, A) .

If this holds for all cardinalities smaller than the initial prediction, the statement holds, since recall con-
sistency with respect to the threshold is equivalent to the term in Equation (1) corresponding to A being
non-increasing with respect to the cardinality of the predictions.

2We provide the detailed proof in Appendix A.

8

Published in Transactions on Machine Learning Research (04/2023)

This definition of suitable cardinality functions depends on the choice of bias function. A particularly
important choice is the constant bias, allowing the metric to be readily applied to most settings. Thus, the
following theorem shows the closed-form solution of its corresponding cardinality function.

Theorem 2 With constant bias the cardinality function has the closed-form solution

γ∗(n, A) =
(

|A| − 1
|A|

)n−1
.

Proof - Sketch2: By an inductive argument, using the fact that the maximum over a set is larger or equal
to all its elements, we can show that γ is lower bounded by γ∗ for all cardinalities. By a similar argument,
rewriting the maximum using a technical lemma, we can show γ is upper bounded by γ∗ for all cardinalities.
Combining both facts yields the statement.

We call TRec with cardinality function γ∗ and constant bias TRec∗. While this gives an easy-to-compute
metric, the general formulation preserves the bias function as a tunable parameter. It is important to retain
this degree of generality in the definition, such that we can still adapt the metric to specific use cases, such
as early prediction.

Finally, we address the bias of time-series precision. In the definition of TPrec, each prediction is weighted
by the inverse of the cardinality of the predictions |P|−1. Instead of using equal weights, we propose to
weigh each term inside the sum by |P |

(∑
P ∈P |P |

)−1. This choice penalizes fragmented predictions by
eliminating their global effects on the total precision. Using these implementations of precision and recall,
we can compute an F1-score and the area under the precision-recall curve (AUPRC). To further justify this
choice, we examine the anomaly scores produced by different methods. We compare the order induced by
the point-wise F1-score with that produced by the F1-score using TRec∗ and the adjusted TPrec∗ and find
that the latter closer matches our intuition. For example, while LSTM-P produces scores that fluctuate
within anomaly windows and spike near the end of and even outside anomaly windows, likely resulting in
fragmented predictions, TCN-AE produces scores that smoothly increase and decrease over the duration of
anomaly windows, resulting in continuous predictions, and spiking at the terminal failure (see Figure 4).

(a) LSTM-P scores (b) TCN-AE scores

Figure 4: Scores from two different methods on a test time series of Exathlon 2, where (b) performs better according
to our score, but worse according to the point-wise F 1-score, providing an ordering aligned with our intuition.

4.3 Evaluation

To address the inconsistencies in evaluation protocols and provide the necessary tools for consistent eval-
uations, we introduce our TimeSeAD library. The library consists of a general training and evaluation
framework geared towards deep learning based methods, several analysis tools for datasets and methods, as
well as a large collection of architectural elements, methods, and baselines. The collections of architectural
elements are implemented on top of PyTorch (Paszke et al., 2019) to provide reusable building blocks al-
lowing for great customization. This setup allows researchers to prototype ideas quickly and users to adjust
individual elements to any setting. Using these elements, we implemented 28 deep methods. Furthermore,
the library provides a common interface for all datasets considered in this study alongside several analysis
tools which we used in the evaluation in Section 3.1. Additionally, we provide a fast (linear in time) imple-
mentation of time series precision and recall along with the extensions proposed in the previous section. All
elements of this library are specifically designed to work well with time-series data.

9

Published in Transactions on Machine Learning Research (04/2023)

The general framework for training and evaluation provides the foundation for a unified evaluation and
enables integration into customized experiment management systems. Thus we implemented a separate
plugin based on sacred (Greff et al., 2017) to run and manage the experiments for the evaluation of methods
and datasets. We used this setup to conduct our analysis of the datasets in Section 3.1 and create a
benchmark of 28 methods on 21 datasets. Since performance can vary greatly between datasets for two sets
of hyperparameters, we adapt grid search to tune the hyperparameters over a preselected set of parameter
choices. To perform grid search without introducing significant bias in the evaluation, we remove part of
the test set to tune the parameters on, before evaluating with the best performing parameters on the rest.
Because of distributional changes in the test set, a fixed, arbitrary split can introduce further bias. To
mitigate its effects, instead, we perform cross-validation on the test set, splitting it into multiple folds and
using each fold once as a validation set. Finally, to mitigate the impact of temporal dependencies between
folds, we remove the neighboring folds of each validation set. To ensure a fair evaluation, we choose a
maximum training time and adjust the size of the parameter grid, such that each method can be fully
evaluated within this time frame. We use this evaluation protocol for all methods3.

4.4 Benchmark results

See Table 1 for the main results of our evaluation on SMD and Exathlon. Here, we show the best F1 scores
based on TRec∗ and TPrec∗, introduced in chapter Section 4.2. To maintain clear visibility, we only report
the induced ranking, where 1 corresponds to the highest and 28 to the lowest score. Interested readers can
find the raw scores alongside evaluations with different metrics in Appendix E.

On SMD, we can see a consistently strong performance by older (less complex) methods, such as LSTM-AE
(Malhotra et al., 2016) and LSTM-P (Malhotra et al., 2015). In contrast, several modern approaches, such as
the group of GAN-based methods, often perform poorly on SMD datasets. Interestingly, SMD and Exathlon
do not share any methods in the top three best performing methods. In fact, methods performing well on
SMD generally struggle on Exathlon and the other way around, indicating that there is currently no dominant
architecture for multivariate time series AD. However, the autoencoder- and prediction-based methods per-
form consistently across multiple datasets. Whereas, the methods collected in other have the most difficulties
across datasets. Our benchmark reveals that the variational autoencoder-based method GMM-GRU-VAE
(Zhang et al., 2021), the prediction-based method GDN (Deng & Hooi, 2021), and the reconstruction-based
STGAT-MAD (Zhan et al., 2022) perform the most consistent across SMD and Exathlon.

There are many reasons why our results might not reflect the promised advances of numerous papers. First,
we use a standardized evaluation protocol with a fixed training time during hyperparameter searches to
guarantee a fair comparison. As more complex models usually take longer to train, we shrink the grid of
possible hyperparameters to fit our limited time budget (see Section 4.3 for details). Second, we tune the
models by maximizing our novel F1 score based on TRec∗ and TPrec∗. Lastly, authors do not always provide
an official implementation, meaning we replicate some methods solely based on the corresponding paper.

5 Discussion

In this section, we discuss current and future challenges of time-series AD.

Quality datasets are the backbone of any evaluation. The analysis in Section 3.1 revealed multiple severe
flaws in many widely used multivariate time-series datasets. Other datasets used for evaluation are sometimes
not publicly available (Audibert et al., 2020; Park et al., 2018). Thus, assessing their quality is virtually
impossible. This poses a huge problem for the field going forward. Publicly available high-quality datasets,
such as CIFAR (Krizhevsky et al., 2009) or ImageNet (Deng et al., 2009) in computer vision, provide great
platforms for comparative evaluations propelling their respective fields forward. Such a dataset is utterly
needed for multivariate time-series AD. Our analysis shows that any new dataset needs to undergo careful
scrutiny. The analysis tools in our TimeSeAD library provide a solid baseline, but future discussion will
likely reveal more potential flaws and pitfalls. Automated detection of distributional shift especially yields
great potential for future analysis.

3We provide a detailed description in Appendix D.

10

Published
in

Transactions
on

M
achine

Learning
R

esearch
(04/2023)

Table 1: Cross-validation results on Exathlon and SMD. We report the ranks according to the best F1-score based on TRec∗ and TPrec∗ averaged
over all test folds. µExa

s and µSMD
s are the ranked average scores over all datasets in Exathlon and SMD, respectively. µall

s shows the ranked order
of the weighted average scores over all datasets from both Exathlon and SMD. We weight µall

s by the number of datasets in Exathlon and SMD in
order to treat both datasets equally. Bold are the top 3, normal size the top 9, and tiny all other methods for each dataset. Full results are provided
in Appendix E.

Exathlon SMD

ID 1 2 4 5 6 9 µExa
s 1 6 8 9 10 11 13 14 16 17 20 21 24 26 27 µSMD

s µall
s

re
co

ns
tr

uc
tio

n

LSTM-AE 24 2 22 21 22 24 22 4 3 5 10 1 8 4 1 1 3 3 1 2 4 3 1 4
LSTM-Max-AE 5 23 24 19 21 8 20 3 24 22 12 21 17 6 19 20 11 21 25 12 7 11 17 22

MSCRED 10 1 2 14 4 1 1 9 19 1 20 19 26 21 26 13 9 24 23 21 22 18 20 12

FC-AE 4 20 11 15 14 11 10 7 13 8 9 11 13 9 8 6 6 14 6 9 8 2 7 7
USAD 7 18 10 11 17 20 15 24 21 20 18 20 11 10 10 24 13 12 15 20 23 15 15 16

TCN-AE 8 5 15 9 19 2 3 21 15 6 23 22 25 23 23 16 16 5 20 22 1 23 21 17

GenAD 3 25 4 10 1 28 4 20 28 24 25 24 28 8 20 23 18 28 28 18 14 13 24 23

STGAT-MAD 14 17 9 20 2 16 14 13 7 14 4 4 10 14 4 3 7 4 10 8 2 5 5 3
AnomalyTransformer 27 27 19 27 3 25 27 26 20 19 28 25 22 27 17 22 26 25 14 19 19 28 27 27

pr
ed

ic
tio

n LSTM-P 19 12 23 8 27 13 25 1 1 2 14 6 9 2 2 4 2 11 7 11 12 4 2 10

LSTM-S2S-P 13 19 1 24 13 6 11 6 16 3 19 23 23 24 25 10 15 17 18 15 13 21 18 18

DeepAnt 12 10 7 12 12 14 7 10 12 12 5 17 15 15 9 7 14 10 13 6 10 20 12 11

TCN-S2S-P 15 7 13 13 24 17 19 16 2 4 6 9 7 16 12 2 1 2 5 5 11 1 3 5
GDN 2 6 17 16 9 5 2 2 14 7 11 7 14 13 14 15 10 14 11 4 20 10 10 2

VA
Es

LSTM-VAE 20 14 14 2 8 18 6 15 11 17 21 2 5 7 13 9 20 8 2 7 24 14 9 8
Donut 23 22 8 4 20 10 16 17 6 9 3 3 6 19 5 18 5 1 9 1 26 9 6 6
LSTM-DVAE 18 24 18 3 23 19 17 25 10 15 22 8 4 18 3 12 23 9 3 10 21 24 13 13

GMM-GRU-VAE 21 11 20 6 6 4 5 11 5 11 2 5 1 17 6 14 4 6 8 3 15 6 4 1
OmniAnomaly 25 21 27 1 5 12 21 18 4 16 8 16 2 1 15 5 21 18 16 14 27 7 11 14

SIS-VAE 17 16 6 7 7 22 12 5 9 10 7 12 12 11 7 8 8 7 12 13 3 8 8 9

G
A

N
s BeatGAN 6 3 16 18 15 15 8 19 18 18 15 13 16 12 18 21 12 16 17 23 17 17 16 15

MAD-GAN 9 15 12 23 10 23 18 22 23 13 17 18 24 22 16 17 24 13 26 27 18 26 23 24

LSTM-VAE-GAN 11 8 5 25 16 7 13 14 17 21 1 15 19 3 22 25 22 21 19 25 6 12 19 20

TadGAN 1 4 21 17 18 21 9 12 26 27 16 14 21 5 21 19 17 19 21 17 5 25 22 21

ot
he

r

LSTM-AE OC-SVM 16 9 25 26 26 26 26 27 25 25 26 27 18 26 27 27 19 23 27 24 9 16 26 26

MTAD-GAT 22 13 26 5 11 9 24 23 8 26 13 10 3 20 11 11 25 20 4 16 16 22 14 19

NCAD 28 28 28 28 28 27 28 28 27 28 27 28 27 28 28 28 28 26 24 28 28 27 28 28

THOC 26 26 3 22 25 3 23 8 22 23 24 26 20 25 24 26 27 27 22 26 25 19 25 25

11

Published in Transactions on Machine Learning Research (04/2023)

Generating data—normal or anomalous—could be used to address certain shortcomings of datasets. The
task of creating large real-world datasets of high quality is difficult for many reasons, often involving complex
systems with many interactions. Thus, recent advances in data generation could be used to augment small
datasets. Even fully artificial datasets could be used to evaluate algorithms with respect to specific aspects
of the data (Wu & Keogh, 2021). On the other hand, generated anomalies could be purposefully injected
into datasets to expand the range of anomalous situations or simulate and recreate anomalies without having
to observe these anomalies in the system. Anomalies in large systems are often expensive to induce or tied
to critical system failures making the latter option appealing for data generation outside simulations.

A common evaluation metric is another critical tool to make evaluations comparable, eliminating the
need to reevaluate many methods repeatedly. In Section 4.2 we presented a recall consistent implementation
of recall for time-series data and an accompanying precision with adjusted bias. We illustrate its capabilities
experimentally through examples and the benchmark presented in Section 4.3, and justify its definition
theoretically in Section 4.2. However, an in-depth experimental comparison to its alternatives on a wide
range of use cases could help steer the community in a unified direction. Particularly interesting could be
an analysis beyond the standard setting, for example, early detection.

The TimeSeAD library provides, at the time of writing, a shared evaluation protocol, a collection of
28 methods, and several analysis tools. New methods are proposed constantly, and the library and future
benchmarks need to adjust accordingly. Thus, if adopted by the community, we will continue to expand the
library, including more methods, metrics, and datasets. Of particular interest are shallow baselines. To truly
justify using large deep models, a solid collection of easier-to-train shallow methods beyond the trivial base-
lines currently implemented is needed to provide a well-rounded benchmark. Especially if datasets become
more complex and high-dimensional, we expect shallow methods to quickly fall behind in performance, as
has been the case for other settings. We encourage researchers to contribute their methods and experiments
to grow the library.

Explanation and robustness play an essential role in safety-critical applications, such as self-driving
cars. The correlation and dependencies between features in multivariate time series, in particular, offer great
opportunities and challenges for explanations and robustness. Some methods offer the necessary mechanisms
to enable explanations, such as feature-based attention or graph-based structures (Zhao et al., 2020; Deng
& Hooi, 2021; Hua et al., 2022; Zhan et al., 2022), leaving ample room to explore these concepts further.
Robustness to corrupted training samples can be important when large-scale data collection is noisy or
unreliable. Recently, Li et al. (2022) analyzed robustness in time-series AD, however, they consider only
four methods on four datasets relying on point-wise metrics. Thus, much more research is needed to explore
robustness further.

Other settings beyond the one presented in this paper appear in many applications. Some require anomalies
to be detected as early as possible, where our metric can be adapted by changing the bias function. Other
settings require anomalies to be detected even before an anomalous event occurs. This requires more than
adjusted metrics. At least the datasets need to include anomalies that are detectable ahead of time. Another
interesting question is that of generalization. Our benchmark revealed that no method consistently performs
best or worst across all datasets. Simply training on multiple datasets at once seems infeasible since datasets
can contain different sets of features. Moreover, even if they contain the same amount of features, individual
samples can differ remarkably, spreading them thin. Another emerging setting considers unequally spaced
time series (Jeong et al., 2022), where we can technically apply classical methods without much effort.
However, developing alternatives that explicitly address temporal irregularities could be an interesting line
of research.

6 Conclusion

Many datasets are severely flawed and form a shaky foundation for AD evaluations. Even carefully con-
structed datasets (such as those in Exathlon) reveal flaws under careful scrutiny. In addition, despite
their well-known problems, point-wise metrics are still the de-facto standard in most evaluations. Together
with inconsistent evaluations, these three main issues create an illusion of progress in time-series AD. We
have proposed TimeSeAD, a library for anomaly detection on multivariate time-series data specialized in

12

Published in Transactions on Machine Learning Research (04/2023)

deep-learning based methods. TimeSeAD contains a new metric that considers temporal dependencies and
produces reliable results, as we demonstrate, a collection of analysis tools for datasets and methods, imple-
mentations of 28 methods, and a general evaluation framework. The metric is provably recall-consistent and
allows for customization through the bias function. Using our library, we created a substantial benchmark
revealing no method that consistently outperforms any competitors. We found that modern approaches often
struggle to reach the performance of older methods. We hope that our comprehensive TimeSeAD library aids
the community in measuring the gains of new algorithms in the future and thus helps to shed some light on
the actual progress in (deep) multivariate time-series AD.

Acknowledgments

Part of this work was conducted within the DFG research unit FOR 5359 on Deep Learning on Sparse
Chemical Process Data (KL 2698/6-1 and KL 2698/7-1). FCFS acknowledges support from TU Berlin
and BASF SE under the BASLEARN - TU Berlin (BASF Joint Lab for Machine Learning) project. MK
acknowledges support by the Carl-Zeiss Foundation, the DFG awards KL 2698/2-1, KL 2698/5-1, KL 2698/6-
1, and KL 2698/7-1, and the BMBF awards 03|B0770E and 01|S21010C.

13

Published in Transactions on Machine Learning Research (04/2023)

References
Chuadhry Mujeeb Ahmed, Venkata Reddy Palleti, and Aditya P Mathur. Wadi: a water distribution testbed

for research in the design of secure cyber physical systems. In Proceedings of the 3rd international workshop
on cyber-physical systems for smart water networks, pp. 25–28, 2017.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In
Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research, pp. 214–223. PMLR, 2017. URL
https://proceedings.mlr.press/v70/arjovsky17a.html.

Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A Zuluaga. Usad: Unsu-
pervised anomaly detection on multivariate time seriesammann2020anomaly. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3395–3404, 2020.

Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A Zuluaga. Do deep neural
networks contribute to multivariate time series anomaly detection? arXiv preprint arXiv:2204.01637,
2022.

Aadyot Bhatnagar, Paul Kassianik, Chenghao Liu, Tian Lan, Wenzhuo Yang, Rowan Cassius, Doyen Sahoo,
Devansh Arpit, Sri Subramanian, Gerald Woo, et al. Merlion: A machine learning library for time series.
arXiv preprint arXiv:2109.09265, 2021.

Ane Blázquez-García, Angel Conde, Usue Mori, and Jose A Lozano. A review on outlier/anomaly detection
in time series data. ACM Computing Surveys (CSUR), 54(3):1–33, 2021.

Chris U Carmona, François-Xavier Aubet, Valentin Flunkert, and Jan Gasthaus. Neural contextual anomaly
detection for time series. arXiv preprint arXiv:2107.07702, 2021.

Cristian I Challu, Peihong Jiang, Ying Nian Wu, and Laurent Callot. Deep generative model with hierarchical
latent factors for time series anomaly detection. In International Conference on Artificial Intelligence and
Statistics, pp. 1643–1654. PMLR, 2022.

Guillaume Chambaret, Laure Berti-Equille, Frédéric Bouchara, Emmanuel Bruno, Vincent Martin, and
Fabien Chaillan. Stochastic pairing for contrastive anomaly detection on time series. In International
Conference on Pattern Recognition and Artificial Intelligence, pp. 306–317. Springer, 2022.

Wenchao Chen, Long Tian, Bo Chen, Liang Dai, Zhibin Duan, and Mingyuan Zhou. Deep variational
graph convolutional recurrent network for multivariate time series anomaly detection. In International
Conference on Machine Learning, pp. 3621–3633. PMLR, 2022.

Zekai Chen, Dingshuo Chen, Xiao Zhang, Zixuan Yuan, and Xiuzhen Cheng. Learning graph structures
with transformer for multivariate time series anomaly detection in iot. IEEE Internet of Things Journal,
2021.

Kukjin Choi, Jihun Yi, Changhwa Park, and Sungroh Yoon. Deep learning for anomaly detection in time-
series data: review, analysis, and guidelines. IEEE Access, 2021.

Zahra Zamanzadeh Darban, Geoffrey I Webb, Shirui Pan, Charu C Aggarwal, and Mahsa Salehi. Deep
learning for time series anomaly detection: A survey. arXiv preprint arXiv:2211.05244, 2022.

Ailin Deng and Bryan Hooi. Graph neural network-based anomaly detection in multivariate time series. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 4027–4035, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. Ieee,
2009.

Keval Doshi, Shatha Abudalou, and Yasin Yilmaz. Tisat: Time series anomaly transformer. arXiv preprint
arXiv:2203.05167, 2022.

14

https://proceedings.mlr.press/v70/arjovsky17a.html

Published in Transactions on Machine Learning Research (04/2023)

Kamil Faber, Marcin Pietron, and Dominik Zurek. Ensemble neuroevolution-based approach for multivariate
time series anomaly detection. Entropy, 23(11):1466, 2021.

Daniel Fährmann, Naser Damer, Florian Kirchbuchner, and Arjan Kuijper. Lightweight long short-term
memory variational auto-encoder for multivariate time series anomaly detection in industrial control sys-
tems. Sensors, 22(8):2886, 2022.

Pavel Filonov, Andrey Lavrentyev, and Artem Vorontsov. Multivariate industrial time series with
cyber-attack simulation: Fault detection using an lstm-based predictive data model. arXiv preprint
arXiv:1612.06676, 2016.

Astha Garg, Wenyu Zhang, Jules Samaran, Ramasamy Savitha, and Chuan-Sheng Foo. An evaluation of
anomaly detection and diagnosis in multivariate time series. IEEE Transactions on Neural Networks and
Learning Systems, 33(6):2508–2517, 2021.

Alexander Geiger, Dongyu Liu, Sarah Alnegheimish, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni.
Tadgan: Time series anomaly detection using generative adversarial networks. In 2020 IEEE International
Conference on Big Data (Big Data), pp. 33–43. IEEE, 2020.

Jonathan Goh, Sridhar Adepu, Khurum Nazir Junejo, and Aditya Mathur. A dataset to support research
in the design of secure water treatment systems. In International conference on critical information
infrastructures security, pp. 88–99. Springer, 2016.

Klaus Greff, Aaron Klein, Martin Chovanec, Frank Hutter, and Jürgen Schmidhuber. The sacred infrastruc-
ture for computational research. In Proceedings of the 16th python in science conference, volume 28, pp.
49–56, 2017.

Yifan Guo, Weixian Liao, Qianlong Wang, Lixing Yu, Tianxi Ji, and Pan Li. Multidimensional time series
anomaly detection: A gru-based gaussian mixture variational autoencoder approach. In Asian Conference
on Machine Learning, pp. 97–112. PMLR, 2018.

Yangdong He and Jiabao Zhao. Temporal convolutional networks for anomaly detection in time series. In
Journal of Physics: Conference Series, volume 1213, pp. 042050. IOP Publishing, 2019.

Hajar Homayouni, Sudipto Ghosh, Indrakshi Ray, Shlok Gondalia, Jerry Duggan, and Michael G Kahn.
An autocorrelation-based lstm-autoencoder for anomaly detection on time-series data. In 2020 IEEE
International Conference on Big Data (Big Data), pp. 5068–5077. IEEE, 2020.

Xiaolei Hua, Lin Zhu, Shenglin Zhang, Zeyan Li, Su Wang, Dong Zhou, Shuo Wang, and Chao Deng. Genad:
General representations of multivariate time seriesfor anomaly detection. arXiv preprint arXiv:2202.04250,
2022.

Alexis Huet, Jose Manuel Navarro, and Dario Rossi. Local evaluation of time series anomaly detection
algorithms. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, pp. 635–645, 2022.

Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and Tom Soderstrom. Detecting
spacecraft anomalies using lstms and nonparametric dynamic thresholding. In Proceedings of the 24th
ACM SIGKDD international conference on knowledge discovery & data mining, pp. 387–395, 2018.

Vincent Jacob, Fei Song, Arnaud Stiegler, Bijan Rad, Yanlei Diao, and Nesime Tatbul. Exathlon: A
benchmark for explainable anomaly detection over time series. arXiv preprint arXiv:2010.05073, 2020.

Kyeong-Joong Jeong, Jin-Duk Park, Kyusoon Hwang, Seong-Lyun Kim, and Won-Yong Shin. Two-stage
deep anomaly detection with heterogeneous time series data. IEEE Access, 10:13704–13714, 2022.

Wenqian Jiang, Yang Hong, Beitong Zhou, Xin He, and Cheng Cheng. A gan-based anomaly detection
approach for imbalanced industrial time series. IEEE Access, 7:143608–143619, 2019.

15

Published in Transactions on Machine Learning Research (04/2023)

Siwon Kim, Kukjin Choi, Hyun-Soo Choi, Byunghan Lee, and Sungroh Yoon. Towards a rigorous evalua-
tion of time-series anomaly detection. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 7194–7201, 2022.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Kwei-Herng Lai, Daochen Zha, Junjie Xu, Yue Zhao, Guanchu Wang, and Xia Hu. Revisiting time series out-
lier detection: Definitions and benchmarks. In Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 1), 2021.

Alexander Lavin and Subutai Ahmad. Evaluating real-time anomaly detection algorithms–the numenta
anomaly benchmark. In 2015 IEEE 14th international conference on machine learning and applications
(ICMLA), pp. 38–44. IEEE, 2015.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444, 2015.

Chang-Ki Lee, Yu-Jeong Cheon, and Wook-Yeon Hwang. Studies on the gan-based anomaly detection
methods for the time series data. IEEE Access, 9:73201–73215, 2021.

Dan Li, Dacheng Chen, Jonathan Goh, and See-kiong Ng. Anomaly detection with generative adversarial
networks for multivariate time series. arXiv preprint arXiv:1809.04758, 2018a.

Dan Li, Dacheng Chen, Baihong Jin, Lei Shi, Jonathan Goh, and See-Kiong Ng. Mad-gan: Multivariate
anomaly detection for time series data with generative adversarial networks. In International Conference
on Artificial Neural Networks, pp. 703–716. Springer, 2019.

Longyuan Li, Junchi Yan, Haiyang Wang, and Yaohui Jin. Anomaly detection of time series with smoothness-
inducing sequential variational auto-encoder, 2021a.

Wenkai Li, Cheng Feng, Ting Chen, and Jun Zhu. Robust learning of deep time series anomaly detection
models with contaminated training data. arXiv preprint arXiv:2208.01841, 2022.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural network:
Data-driven traffic forecasting. In International Conference on Learning Representations, 2018b. URL
https://openreview.net/forum?id=SJiHXGWAZ.

Zhihan Li, Youjian Zhao, Jiaqi Han, Ya Su, Rui Jiao, Xidao Wen, and Dan Pei. Multivariate time series
anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In Pro-
ceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230,
2021b.

Benjamin Lindemann, Benjamin Maschler, Nada Sahlab, and Michael Weyrich. A survey on anomaly detec-
tion for technical systems using lstm networks. Computers in Industry, 131:103498, 2021.

Yuan Luo, Ya Xiao, Long Cheng, Guojun Peng, and Danfeng Yao. Deep learning-based anomaly detection
in cyber-physical systems: Progress and opportunities. ACM Computing Surveys (CSUR), 54(5):1–36,
2021.

Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal. Long short term memory networks
for anomaly detection in time series. In 23rd European Symposium on Artificial Neural Networks, ESANN
2015, Bruges, Belgium, April 22-24, 2015, 2015. URL http://www.elen.ucl.ac.be/Proceedings/
esann/esannpdf/es2015-56.pdf.

Pankaj Malhotra, Anusha Ramakrishnan, Gaurangi Anand, Lovekesh Vig, Puneet Agarwal, and Gautam
Shroff. Lstm-based encoder-decoder for multi-sensor anomaly detection. arXiv preprint arXiv:1607.00148,
2016.

Ali H Mirza and Selin Cosan. Computer network intrusion detection using sequential lstm neural networks
autoencoders. In 2018 26th signal processing and communications applications conference (SIU), pp. 1–4.
IEEE, 2018.

16

https://openreview.net/forum?id=SJiHXGWAZ
http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2015-56.pdf
http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2015-56.pdf

Published in Transactions on Machine Learning Research (04/2023)

Mohsin Munir, Shoaib Ahmed Siddiqui, Andreas Dengel, and Sheraz Ahmed. Deepant: A deep learning
approach for unsupervised anomaly detection in time series. Ieee Access, 7:1991–2005, 2018.

Zijian Niu, Ke Yu, and Xiaofei Wu. Lstm-based vae-gan for time-series anomaly detection. Sensors, 20(13):
3738, 2020.

John Paparrizos, Paul Boniol, Themis Palpanas, Ruey S Tsay, Aaron Elmore, and Michael J Franklin. Volume
under the surface: a new accuracy evaluation measure for time-series anomaly detection. Proceedings of
the VLDB Endowment, 15(11):2774–2787, 2022.

Daehyung Park, Yuuna Hoshi, and Charles C Kemp. A multimodal anomaly detector for robot-assisted
feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters, 3(3):1544–
1551, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32, 2019.

Joao Pereira and Margarida Silveira. Unsupervised anomaly detection in energy time series data using
variational recurrent autoencoders with attention. In 2018 17th IEEE international conference on machine
learning and applications (ICMLA), pp. 1275–1282. IEEE, 2018.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Francis Bach and
David Blei (eds.), Proceedings of the 32nd International Conference on Machine Learning, volume 37
of Proceedings of Machine Learning Research, pp. 1530–1538, Lille, France, 2015. PMLR. URL https:
//proceedings.mlr.press/v37/rezende15.html.

Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexander Binder,
Emmanuel Müller, and Marius Kloft. Deep one-class classification. In International conference on machine
learning, pp. 4393–4402. PMLR, 2018.

Lukas Ruff, Robert A. Vandermeulen, Nico Görnitz, Alexander Binder, Emmanuel Müller, Klaus-Robert
Müller, and Marius Kloft. Deep semi-supervised anomaly detection. In International Conference on
Learning Representations, 2020. URL https://openreview.net/forum?id=HkgH0TEYwH.

Lukas Ruff, Jacob R. Kauffmann, Robert A. Vandermeulen, Grégoire Montavon, Wojciech Samek, Marius
Kloft, Thomas G. Dietterich, and Klaus-Robert Müller. A unifying review of deep and shallow anomaly
detection. Proc. IEEE, 109(5):756–795, 2021.

Mahmoud Said Elsayed, Nhien-An Le-Khac, Soumyabrata Dev, and Anca Delia Jurcut. Network anomaly
detection using lstm based autoencoder. In Proceedings of the 16th ACM Symposium on QoS and Security
for Wireless and Mobile Networks, pp. 37–45, 2020.

Erik Scharwächter and Emmanuel Müller. Statistical evaluation of anomaly detectors for sequences. arXiv
preprint arXiv:2008.05788, 2020.

Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. Anomaly detection in time series: a compre-
hensive evaluation. Proceedings of the VLDB Endowment, 15(9):1779–1797, 2022.

Bernhard Schölkopf, John C. Platt, John Shawe-Taylor, Alex J. Smola, and Robert C. Williamson. Estimat-
ing the Support of a High-Dimensional Distribution. Neural Computation, 13(7):1443–1471, 07 2001. ISSN
0899-7667. doi: 10.1162/089976601750264965. URL https://doi.org/10.1162/089976601750264965.

Lifeng Shen, Zhuocong Li, and James Kwok. Timeseries anomaly detection using temporal hierarchical
one-class network. Advances in Neural Information Processing Systems, 33:13016–13026, 2020.

Maximilian Sölch, Justin Bayer, Marvin Ludersdorfer, and Patrick van der Smagt. Variational inference for
on-line anomaly detection in high-dimensional time series. arXiv preprint arXiv:1602.07109, 2016.

17

https://proceedings.mlr.press/v37/rezende15.html
https://proceedings.mlr.press/v37/rezende15.html
https://openreview.net/forum?id=HkgH0TEYwH
https://doi.org/10.1162/089976601750264965

Published in Transactions on Machine Learning Research (04/2023)

Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. Robust anomaly detection for
multivariate time series through stochastic recurrent neural network. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2828–2837, 2019.

Nesime Tatbul, Tae Jun Lee, Stan Zdonik, Mejbah Alam, and Justin Gottschlich. Precision and recall for
time series. Advances in neural information processing systems, 31, 2018.

Markus Thill, Wolfgang Konen, and Thomas Bäck. Time series encodings with temporal convolutional
networks. In International Conference on Bioinspired Methods and Their Applications, pp. 161–173.
Springer, 2020.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
Graph attention networks. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=rJXMpikCZ.

Taras K. Vintsyuk. Speech discrimination by dynamic programming. Cybernetics, 4(1):52–57, January 1968.
ISSN 1573-8337. doi: 10.1007/BF01074755. URL https://doi.org/10.1007/BF01074755.

Lan Wang, Yusan Lin, Yuhang Wu, Huiyuan Chen, Fei Wang, and Hao Yang. Forecast-based multi-aspect
framework for multivariate time-series anomaly detection. In 2021 IEEE International Conference on Big
Data (Big Data), pp. 938–947. IEEE, 2021.

Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun. Transformers
in time series: A survey. arXiv preprint arXiv:2202.07125, 2022.

Renjie Wu and Eamonn Keogh. Current time series anomaly detection benchmarks are flawed and are
creating the illusion of progress. IEEE Transactions on Knowledge and Data Engineering, 2021.

Qinfeng Xiao, Shikuan Shao, and Jing Wang. Memory-augmented adversarial autoencoders for multivariate
time-series anomaly detection with deep reconstruction and prediction. arXiv preprint arXiv:2110.08306,
2021.

Haowen Xu, Yang Feng, Jie Chen, Zhaogang Wang, Honglin Qiao, Wenxiao Chen, Nengwen Zhao, Zeyan Li,
Jiahao Bu, Zhihan Li, and et al. Unsupervised anomaly detection via variational auto-encoder for seasonal
kpis in web applications. Proceedings of the 2018 World Wide Web Conference on World Wide Web - WWW
’18, 2018. doi: 10.1145/3178876.3185996. URL http://dx.doi.org/10.1145/3178876.3185996.

Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Anomaly transformer: Time series anomaly
detection with association discrepancy. In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=LzQQ89U1qm_.

Jun Zhan, Siqi Wang, Xiandong Ma, Chengkun Wu, Canqun Yang, Detian Zeng, and Shilin Wang. Stgat-
mad: Spatial-temporal graph attention network for multivariate time series anomaly detection. In ICASSP
2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
3568–3572. IEEE, 2022.

Chuxu Zhang, Dongjin Song, Yuncong Chen, Xinyang Feng, Cristian Lumezanu, Wei Cheng, Jingchao
Ni, Bo Zong, Haifeng Chen, and Nitesh V Chawla. A deep neural network for unsupervised anomaly
detection and diagnosis in multivariate time series data. In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pp. 1409–1416, 2019.

Hongjing Zhang, Fangzhou Cheng, and Aparna Pandey. One-class predictive autoencoder towards unsuper-
vised anomaly detection on industrial time series. In ANDEA ’22, 2022a.

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empiri-
cal risk minimization. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=r1Ddp1-Rb.

18

https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.1007/BF01074755
http://dx.doi.org/10.1145/3178876.3185996
https://openreview.net/forum?id=LzQQ89U1qm_
https://openreview.net/forum?id=r1Ddp1-Rb
https://openreview.net/forum?id=r1Ddp1-Rb

Published in Transactions on Machine Learning Research (04/2023)

Kai Zhang, Yushan Jiang, Lee Seversky, Chengtao Xu, Dahai Liu, and Houbing Song. Federated variational
learning for anomaly detection in multivariate time series. In 2021 IEEE International Performance,
Computing, and Communications Conference (IPCCC), pp. 1–9. IEEE, 2021.

Weiqi Zhang, Chen Zhang, and Fugee Tsung. Grelen: Multivariate time series anomaly detection from
the perspective of graph relational learning. In Lud De Raedt (ed.), Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence, IJCAI-22, pp. 2390–2397. International Joint
Conferences on Artificial Intelligence Organization, 7 2022b. doi: 10.24963/ijcai.2022/332. Main Track.

Hang Zhao, Yujing Wang, Juanyong Duan, Congrui Huang, Defu Cao, Yunhai Tong, Bixiong Xu, Jing Bai,
Jie Tong, and Qi Zhang. Multivariate time-series anomaly detection via graph attention network. In 2020
IEEE International Conference on Data Mining (ICDM), pp. 841–850. IEEE, 2020.

Bin Zhou, Shenghua Liu, Bryan Hooi, Xueqi Cheng, and Jing Ye. Beatgan: Anomalous rhythm detection
using adversarially generated time series. In IJCAI, pp. 4433–4439, 2019.

19

Published in Transactions on Machine Learning Research (04/2023)

A Metrics

Let X ∈ RT ×F be a time series of length T and dimension F and let y ∈ RT be the corresponding point-wise
labels. Given an online anomaly detector, s : RT ×F → RT that computes a score for each time step in X
based only on points that came before it. The set of anomalies is

A = {[a, b] ⊂ [T] | ∀t ∈ [a, b] : y[t] = 1;∄[a′, b′] ⊋ [a, b] : ∀t ∈ [a′, b′] : y[t] = 1}

and the set of all predictions for a threshold λ ∈ R is

Pλ = {[a, b] ⊂ [T] | ∀t ∈ [a, b] : s(x)[t] ≥ λ;∄[a′, b′] ⊋ [a, b] : ∀t ∈ [a′, b′] : s(x)[t] ≥ λ}.

Given a cardinality function γ : N × P([T]) → R≥0 and a bias function δ : R → R≥0, where P([T]) is the
power set of [T], the time-series recall is given by

TRec(A, P) = 1
|A|

∑
A∈A

α1(|PA| > 0) + (1 − α)γ(|PA|, A)
∑
P ∈P

∑
t∈P ∩A

δ(t − min A, |A|)∑
t∈A

δ(t − min A, |A|)


with PA = {P ∈ P | |A ∩ P | > 0}. The cardinality function is monotone decreasing in its first argument and
γ(1, ·) = 1.

Proof of Theorem 1: It is straightforward to see, that γ is monotone decreasing, as the maximum is over
all values with smaller inputs multiplied by a factor smaller than one. It remains to show, that the resulting
TRec is recall consistent.

Since the terms within the sum are all non-negative, it suffices to show, that each individual term only ever
decreases. Consider two thresholds λ, λ′ ∈ R with λ′ > λ and anomaly A ∈ A such that Pλ

A ̸= Pλ′

A . Note that
|Pλ

A| = 0 implies |Pλ′

A | = 0. If |Pλ′

A | = 0, the inner sum is zero, and the statement is true. Thus, we assume
|Pλ′

A | > 0 and can therefore ignore the first term inside the outer sum, since 1(|Pλ
A| > 0) = 1(|Pλ′

A | > 0)
always holds.

First, we consider the case |Pλ′

A | ≥ |Pλ
A|. Since γ is monotone decreasing in its first argument and the inner

sum loses at least one non-negative term, the second term can either decrease or stay the same.

Next, we consider the case |Pλ′

A | < |Pλ
A|. We want to show that each term only ever decreases with an

increasing threshold, i.e.

γ(|Pλ
A|, A)

∑
P ∈Pλ

A

∑
t∈P ∩A

δ(t − min A, |A|)∑
t∈A

δ(t − min A, |A|) ≥ γ(|Pλ′

A |, A)
∑

P ∈Pλ′
A

∑
t∈P ∩A

δ(t − min A, |A|)∑
t∈A

δ(t − min A, |A|) .

If γ(|Pλ′

A |, A) = 0, the recall does not not change, because γ is monotone decreasing. Thus we assume
γ(|Pλ′

A |, A) > 0, in which case the inequality above holds if and only if

γ(|Pλ
A|, A)

γ(|Pλ′
A |, A)

≥

∑
P ∈Pλ′

A

∑
t∈P ∩A

δ(t − min A, |A|)∑
P ∈Pλ

A

∑
t∈P ∩A

δ(t − min A, |A|) .

Consider ∆δ =
∑

P ∈Pλ
A

∑
t∈P ∩A

δ(t − min A, |A|) −
∑

P ∈Pλ′
A

∑
t∈P ∩A

δ(t − min A, |A|) > 0. Then it holds

∆δ ≥ |
⋃

P ∈Pλ
A

P ′∈Pλ′
A

P \ P ′| ≥ |Pλ
A| − |Pλ′

A |

20

Published in Transactions on Machine Learning Research (04/2023)

Since P ∩ A ⊂ A, we also know∑
P ∈Pλ′

A

∑
t∈P ∩A

δ(t − min A, |A|)∑
P ∈Pλ

A

∑
t∈P ∩A

δ(t − min A, |A|) =

∑
P ∈Pλ

A

∑
t∈P ∩A

δ(t − min A, |A|) − ∆δ∑
P ∈Pλ

A

∑
t∈P ∩A

δ(t − min A, |A|)

≤

∑
t∈A

δ(t − min A, |A|) − ∆δ∑
t∈A

δ(t − min A, |A|)

≤

∑
t∈A

δ(t − min A, |A|) − (|Pλ
A| − |Pλ′

A |)∑
t∈A

δ(t − min A, |A|)

Thus, if

γ(|Pλ
A|, A) ≥

∑
t∈A

δ(t − min A, |A|) − (|Pλ
A| − |Pλ′

A |)∑
t∈A

δ(t − min A, |A|) γ(|Pλ′

A |, A)

holds true for all 0 < |Pλ′

A | < |Pλ
A|, the resulting recall is recall consistent. □

Lemma 1 For any x ∈ R≥1 it holds
(

x−1
x

)n ≥ x−n
x for all n ∈ N.

Proof: We know
(

x−1
x

)1 = x−1
x . By induction over n, it holds(

x − 1
x

)n+1
≥ x − 1

x

x − n

x
= x − (n + 1)

x
+ n

x2 ≥ x − (n + 1)
x

□

Proof of Theorem 2: We show the proposition by induction. First, note that γ∗(n, A) =
(

|A|−1
|A|

)0
= 1.

Now assume γ∗(m, A) =
(

|A|−1
|A|

)m−1
for all m ≤ n. Then it holds

γ∗(n + 1, A) = max
0<m<n+1

∑
t∈A

δ(t − min A, |A|) − n − 1 + m∑
t∈A

δ(t − min A, |A|) γ(m, A)

= max
0<m<n+1

|A| − n − 1 + m

|A|

(
|A| − 1

|A|

)m−1

≥ |A| − 1
|A|

(
|A| − 1

|A|

)n−1
=

(
|A| − 1

|A|

)n

Furthermore, it holds

γ∗(n + 1, A) = max
0<m<n+1

∑
t∈A

δ(t − min A, |A|) − n − 1 + m∑
t∈A

δ(t − min A, |A|) γ(m, A)

= max
0<m<n+1

|A| − n − 1 + m

|A|

(
|A| − 1

|A|

)m−1

Lemma 1
≤ max

0<m<n+1

(
|A| − 1

|A|

)n+1−m (
|A| − 1

|A|

)m−1

=
(

|A| − 1
|A|

)n

□

21

Published in Transactions on Machine Learning Research (04/2023)

B Datasets

In this section, we provide a more detailed description and analysis of all considered datasets. Additionally,
we provide further examples of any issues we found. First and foremost, we provide the general statistics of
each dataset, see Table 2.

Table 2: Statistics of each dataset

Dataset Features train size test size Anomalies
SWaT 51 495000 449919 35 12.1%
WADI 123 784571 172801 14 5.8%
SMAP 25 140825 444035 69 12.8%
MSL 55 58317 73729 36 10.5%
SMD 0 38 28479 28479 8 9.5 %
SMD 1 38 23694 23694 10 2.3 %
SMD 2 38 23702 23703 12 3.4 %
SMD 3 38 23706 23707 12 3.0 %
SMD 4 38 23705 23706 7 0.4 %
SMD 5 38 23688 23689 30 15.7 %
SMD 6 38 23697 23697 13 10.1 %
SMD 7 38 23698 23699 20 3.2 %
SMD 8 38 23693 23694 13 4.9 %
SMD 9 38 23699 23700 11 12.0 %
SMD 10 38 23688 23689 10 1.1 %
SMD 11 38 23689 23689 20 7.2 %
SMD 12 38 23688 23689 21 4.1 %
SMD 13 38 28743 28743 8 1.5 %
SMD 14 38 23696 23696 20 1.8 %
SMD 15 38 23702 23703 1 0.7 %
SMD 16 38 28722 28722 10 6.1 %
SMD 17 38 28700 28700 4 1.1 %
SMD 18 38 23692 23693 13 4.4 %
SMD 19 38 28695 28696 3 0.7 %
SMD 20 38 23702 23703 10 4.7 %
SMD 21 38 23703 23703 26 2.7 %
SMD 22 38 23687 23687 8 4.1 %
SMD 23 38 23690 23691 11 1.8 %
SMD 24 38 28726 28726 11 4.2 %
SMD 25 38 28705 28705 5 1.5 %
SMD 26 38 28703 28704 6 4.8 %
SMD 27 38 28713 28713 4 1.1 %
Exathlon 1 19 41382 49810 9 17.1 %
Exathlon 2 19 68917 96535 9 17.6 %
Exathlon 3 19 115160 15270 7 16.0 %
Exathlon 4 19 208720 133223 11 12.6 %
Exathlon 5 19 133411 190372 21 9.5 %
Exathlon 6 19 303087 97221 11 9.6 %
Exathlon 9 19 273247 103511 14 13.0 %
Exathlon 10 19 178685 106251 13 13.9 %

Papers that evaluate on SWaT include (Li et al., 2018a; 2019; Audibert et al., 2020; Shen et al., 2020; Faber
et al., 2021; Zhang et al., 2021; Xiao et al., 2021; Deng & Hooi, 2021; Carmona et al., 2021; Xu et al., 2022;
Li et al., 2021b; Fährmann et al., 2022; Doshi et al., 2022; Zhan et al., 2022; Zhang et al., 2022b;a).

22

Published in Transactions on Machine Learning Research (04/2023)

Papers that evaluate on WADI include (Li et al., 2019; Audibert et al., 2020; Faber et al., 2021; Deng &
Hooi, 2021; Xu et al., 2022; Li et al., 2021b; Fährmann et al., 2022; Zhan et al., 2022; Zhang et al., 2022b;a).

Papers that evaluate on SMAP include (Hundman et al., 2018; Audibert et al., 2020; Geiger et al., 2020;
Zhao et al., 2020; Shen et al., 2020; Zhang et al., 2021; Xiao et al., 2021; Carmona et al., 2021; Xu et al.,
2022; Challu et al., 2022; Chen et al., 2022; Doshi et al., 2022; Hua et al., 2022; Chambaret et al., 2022;
Zhang et al., 2022a)

Papers that evaluate on MSL include (Hundman et al., 2018; Su et al., 2019; Audibert et al., 2020; Geiger
et al., 2020; Zhao et al., 2020; Shen et al., 2020; Zhang et al., 2021; Xiao et al., 2021; Wang et al., 2021; Xu
et al., 2022; Challu et al., 2022; Chen et al., 2022; Doshi et al., 2022; Hua et al., 2022; Chambaret et al.,
2022; Zhang et al., 2022a)

Papers that evaluate on SMD include (Su et al., 2019; Audibert et al., 2020; Xiao et al., 2021; Wang et al.,
2021; Carmona et al., 2021; Xu et al., 2022; Li et al., 2021b; Challu et al., 2022; Chen et al., 2022; Doshi
et al., 2022; Hua et al., 2022; Zhan et al., 2022; Zhang et al., 2022b)

Papers that evaluate on Exathlon include (Schmidl et al., 2022).

B.1 Secure Water Treatement (SWaT)

The Secure Water Treatment (SWaT) dataset Goh et al. (2016) originates from the operation of a miniature
water-treatment plant. 51 sensors were recorded during 11 days of plant operation at a sampling rate of 1
Hz. The dataset is split into a training set and a test set. The training set corresponds to the first six days
of operation, during which no incidents occurred. The remaining five days make up the test set. During this
time, 36 attacks on the miniature plant were conducted, both against the plant’s physical components and
its control software. A time step is labeled anomalous if an attack occurred at that time. In total, Goh et al.
(2016) conducted 36 attacks against the system, of which two overlap, so they make up a single anomaly
window. The average attack length is around 600 time steps (10 minutes). Goh et al. (2016) note that the
data recording started when the plant was offline, and the first 5 hours correspond to the plant’s start-up
procedure. They have already removed the first 30 minutes from the dataset, but we follow Li et al. (2019)
and remove the 4.5 hours after that as well. Otherwise, those data points could hamper some methods
attempting to model the distribution or process that generates normal data.

With roughly 12% of points anomalous, SWaT’s anomaly density is barely acceptable. The distribution of
anomaly positions in SWaT, see Figure 5a, reveals no clear bias, except for one large cluster in the middle of
the time series. Looking at the lengths of anomaly windows, see Figure 5b reveals an extremely long anomaly

(a) Relative anomaly positions (b) Anomaly window lengths

Figure 5: Relative position of anomalies (a) and the distribution of anomaly lengths (b) in the test set of SWaT.

window containing more than 35,000 points (8.5 hours). These lengths by far exceed any reasonable setting
for window sizes, which usually are smaller than 100.

Looking at the mean and standard deviation of the features in SWaT, see Figure 6, reveals clear instances
of distributional shift, some features that are constant throughout training and test set, and several features
that seem trivial to solve. The consistently constant features mostly correspond to backup actuators that
only become active when their primary counterpart fails for some reason. As this does not occur during the

23

Published in Transactions on Machine Learning Research (04/2023)

training period, the backup actuators never activate. We test a trivial thresholding method on each feature,

(a) Train set feature distribution (b) Test set feature distribution

Figure 6: Mean and standard deviation for each feature in SWaT of normal points (black) and anomalies (red).
Multiple features are constant across the entire dataset (diamond), some even across training and test set. Other
features suggest a distributional shift between the training and test set.

by using the distance to the mean computed from the training set as the anomaly score. Indeed, for several
features, we can achieve comparable performance to several deep methods. However, many modern methods
still outperform the trivial baseline. Inspecting the features reveals one large anomaly responsible for the
deviating mean. Multiple smaller anomalies, however, are not trivially reflected in the feature alone, see
Figure 7. The specification reveals, that these sensors are flow meters. Even though a thresholding method

(a) FIT503 (b) FIT504

Figure 7: Two features from the test set of SWaT.

on these features presents a strong baseline, especially with respect to point-wise metrics, these features do
not seem trivial.

Looking at other features in SWaT reveals some instances, where anomalies seem to cause late- or long-term
effects, see Figure 8. In on instance (Figure 8b), the behavior of a feature drastically changes after some

(a) P403 (b) AIT201

Figure 8: Two features from the test set of SWaT. Each feature was normalized based on the statistics of the training
set.

anomalies have occurred, causing a severe distributional shift in that feature. Another example shows a
sudden abnormal spike shortly after an anomaly window. Since such sikes or distributional shift does not
appear in the training set, it does not seem reasonable for a fully trained anomaly detection algorithm to
ignore such instances.

24

Published in Transactions on Machine Learning Research (04/2023)

B.2 WAter DIstribution (WADI)

The Water Distribution (WADI) (Ahmed et al., 2017) dataset is similar to SWaT. Its 123 features cor-
respond to sensor values/actuator states in a miniature water-distribution grid connected to the SWaT
water-treatment plant. Ahmed et al. (2017) recorded the operation of the grid for 16 continuous days at a
sample rate of 1 Hz and launched a total of 15 attacks in the last two days. Thus, the test set is a single time
series corresponding to the last two days of operation, whereas the training set consists of the first 14 days.
We use version A2 of the dataset, where the authors removed a good chunk of the original data (425,030 of
1,209,601 data points) from the middle of the training set, which is now split into two TS. Note that the
dataset file actually contains 127 columns. However, 4 of those do not contain any value at any time step,
so we remove them entirely. There are also some spurious missing values in the remaining data, which we
simply replace with the last available value for the affected feature.

The anomaly density in WADI seems reasonable with 6%, and the anomalies seem reasonably distributed,
even if they are mostly clustered at the beginning, end, and middle of the time series, see Figure 9a. There is

(a) Relative anomaly positions (b) Anomaly window lengths

Figure 9: Relative position of anomalies (a) and the distribution of anomaly lengths (b) in the test set of WADI.

no extremely long anomaly window, such as in SWaT. However, several windows contain over 1,000 points,
which we should still consider too long in general. Looking at the feature distribution, see Figure 10, we
can see one feature in particular, for which the distributions vastly differ. Examining the piping diagram

(a) Train set feature distribution (b) Test set feature distribution

Figure 10: Mean and standard deviation for each feature in SWaT of normal points (black) and anomalies (red).
Multiple features are constant across the entire dataset (diamond).

of WADI reveals that the exploding feature belongs to a turbidity sensor, and the authors claim that the
previous attack introduces contaminated water to the grid. Therefore, it is not unlikely that the attack was
the cause of the explosion of that feature. We are no experts on the subject, but the sensor data jumps
to about 200 after normalization, see Figure 11b. If this is intended behavior, there is no way to infer this
based on the training set. In other sensors we can observe possible late effects as well, see Figure 11a.

25

Published in Transactions on Machine Learning Research (04/2023)

(a) 2_P_004_SPEED (b) 2A_AIT_002_PV

Figure 11: Two features from the test set of WADI. Each feature was normalized based on the statistics of the training
set.

B.3 Soil Moisture Active Passive (SMAP)

The Soil Moisture Active Passive dataset (Hundman et al., 2018) contains 55 time series. All but one feature
in each time series corresponds to commands sent to a satellite at a given point in time and are represented
by binary features. The remaining feature contains the actual sensor values reported by the satellite. Each
time series corresponds to a possibly different telemetry channel of that satellite. Thus, at least one feature
is different for all time series. Furthermore, we were not able to find a specification of the remaining features.
Thus, we have no way of verifying their consistency across different time series. All things considered, the
time series in SMAP are technically generated by different processes and should be treated as such. To
illustrate the extent of the differences between individual time series, we visualize the sensor feature from
multiple time series in the training set, see Figure 12.

Figure 12: The sensor feature from different time series in the training set of SMAP.

Beyond the conceptual flaws, we still find a clear positional bias towards the latter half of the time series,
see Figure 13a, and several anomalies longer than 2000 time points, see Figure 13b.

Since the time series are generated by different processes, we examine the distributional changes within each
time series. We find instances, where all command features are constant throughout the test time series or
at least after some initial period, see Figure 14. Since all methods rely on windowing, the sensor feature
provides the only context for prediction, see Figure 15. Since the feature is constant before and after the
anomaly and no additional information is provided by the command features, this does not seem to be a
reasonable task for anomaly detection. The example shows an instance, where anomalies seem to cause long-
term effects, which are not reflected in the label. We can find more examples of this behavior throughout
the dataset, see Figure 16.

26

Published in Transactions on Machine Learning Research (04/2023)

(a) Relative anomaly positions (b) Anomaly window lengths

Figure 13: Relative position of anomalies (a) and the distribution of anomaly lengths (b) in the test set of SMAP.

(a) Train set feature distribution (b) Test set feature distribution

Figure 14: Example of the feature means and standard deviations

(a) Sensor in training set (b) Sensor in test set

Figure 15: Example of the sensor feature in training and test set.

Figure 16: Example of a distributional shift in the sensor feature in the test set of SMAP.

27

Published in Transactions on Machine Learning Research (04/2023)

B.4 Mars Science Lab (MSL)

The Mars Science Lab dataset (Hundman et al., 2018) is similarly constructed as SMAP. It contains 27 time
series, each containing a single telemetry value feature and binary encoded command for the rest. Thus, it
shares many of the same problems as SMAP, see Figure 17.

Figure 17: The sensor feature from different time series in the training set of MSL.

The positional bias, see Figure 18a, and long anomalies, see Figure 18b, are not as pronounced as in SMAP,
but still noticeable.

(a) Relative anomaly positions (b) Anomaly window lengths

Figure 18: Relative position of anomalies (a) and the distribution of anomaly lengths (b) in the test set of SMAP.

Similarly to SMAP, we can identify instances of possible distributional shift and long-term effects, see
Figure 19.

(a) Sensor in training set (b) Sensor in test set

Figure 19: Example of the sensor feature in training and test set of MSL. In a wide window around the anomaly
window all other features are constant.

28

Published in Transactions on Machine Learning Research (04/2023)

Taking all these issues together, both SMAP and MSL do not seem suited for the evaluation of general deep
time-series AD. Specialized methods that exploit the intricacies of the data will most likely outperform any
general algorithms. Because the datasets are lacking detailed documentation it is difficult to assess the extent
to which the long-term effects seemingly caused by anomalies are intended behavior. Even then, the datasets
might be more suited to change point detection methods. Since the command features are constant for a
large portion of both datasets, it begs the question of how much they can contribute to general algorithms
and if the problem is as complex as their presence suggests.

B.5 Server Machine Data (SMD)

The Server Machine Data dataset (Su et al., 2019) consists of 28 time series. According to the authors,
the dataset was collected from a large internet company over a period of five weeks. The first half of the
dataset comprises the training set and the latter half the test set. Unfortunately, we were not able to find
any more information on this dataset. However, because each time series was apparently sampled under
different conditions, each time series in this dataset should be considered independently.

Looking at the distribution of anomaly positions in each time series, we can identify three instances with
a clear positional bias towards the end of the time series, see Figure 20a top. For one server in particular,
see Figure 20 middle, the distribution is dominated by one large anomaly. For most time series, however,

(a) Relative anomaly positions (b) Anomaly window lengths

Figure 20: Relative position of anomalies (a) and the distribution of anomaly lengths (b) in the test set of different
time series in SMD.

anomaly windows never exceed 1,000 time steps and usually not even 500 time steps. Most time series
contain only few anomalies, making any definitive statement on their distribution difficult. One time series
even contains just one anomaly. Time series, for which we can identify positional bias include: machine-1-1,
machine-2-1, machine-2-2, machine-2-9, and machine-3-8.

Most time series suffer from consistently constant features, see Figure 21. Several of the constant features

29

Published in Transactions on Machine Learning Research (04/2023)

(a) Train set feature distribution (b) Test set feature distribution

Figure 21: Example of the feature distribution of a time series in SMD.

are constant for all time series. Since we cannot say for certain what those features represent due to the lack
of documentation, we are reluctant to outright remove those features. We do not expect the performance to
suffer much from their inclusion as they make up only very small percentage of features.

In several time series we have found possible delayed effects of anomalies, see Figure 22. In other time series

(a) feature 8 of machine-1-1 (b) feature 19 of machine-1-5

(c) feature 4 of machine-1-6 (d) feature 13 of machine-1-8

(e) feature 15 of machine-2-5 (f) feature 3 of machine-3-5

Figure 22: Instances where we suspect anomalies had delayed effects.

we strongly suspect anomalies had long term effects on the system, see Figure 23. In most instances, we can
observe the effects across multiple features. That and the unusual ranges seem to affirm our assessment.

For one time series, in particular, we could observe a feature dropping to zero and staying constant directly
after an anomaly occurs, see Figure 24. However, we can also observe a constant period at the start of the
training set. This effect might be caused by a startup period in the training set and a crash in the test
set. Without full knowledge of the underlying process, we can not give a definitive judgment on this case.
However, this illustrates, that this dataset needs to undergo careful scrutiny by experts familiar with the
underlying process. Until then we exclude machine-1-1, machine-1-3, machine-1-4, machine-1-5, machine-1-6,

30

Published in Transactions on Machine Learning Research (04/2023)

(a) feature 4 of machine-1-3 (b) feature 4 of machine-1-4

(c) feature 15 of machine-2-8 (d) feature 5 of machine-3-11

(e) feature 6 of machine-3-4 (f) feature 4 of machine-3-7

Figure 23: Instances where we suspect anomalies had long-term effects.

(a) Training set (b) Test set

Figure 24: Feature 34 of machine-3-10.

machine-1-8, machine-2-5, machine-2-8, machine-3-4, machine-3-5, machine-3-7, machine-3-10, and machine-
3-11 from our final report. However, we still evaluate and report on all datasets from SMD. We will provide
the missing results in Appendix E.

31

Published in Transactions on Machine Learning Research (04/2023)

B.6 Exathlon

The Exathlon dataset (Jacob et al., 2020) was created from ten applications running on a Spark cluster with
four nodes. The authors collected 2,283 metrics from the monitoring system and the underlying operating
system. They remark, that the collected metrics could very well be correlated and suggest a curated subset
of 19 features to use instead. Furthermore, in their implementation, they remove all time series from two
applications (ids 7 and 8). One application contains no anomalies in the test set and the other has no training
set. Thus, we only consider applications 1-6 and 9-10. The final dataset thus consists of eight datasets, each
consisting of the execution traces of a single application. For the test set, they insert six types of anomalies
in the cluster. One anomaly, in particular, uses up memory until the application crashes due to memory
constraints, which means at least seven timer series suffer from positional bias, which is generally weakened
by the other time series of each application. A detailed description of all applications and anomalies can be
found on the GitHub page of the original implementation4.

Overall we find a slight positional bias in several datasets, mostly attributed to the one anomaly discussed
prior. We found no consistently constant features throughout the entire dataset. Most time series in the
dataset contain unusual spikes, which the authors attribute to background activities on the cluster. Since
such background activity is considered normal we ignore such cases in general. However, we would like to
draw attention to one particular instance, where the spike reaches a new high directly after an anomaly
occurs, see Figure 25. Since the effect of this spike is reflected in multiple features and we found no other

(a) driver_StreamingMetrics_streaming_lastCom- pleted-
Batch_processingDelay_value

(b) 1_diff_avg_executor_runTime_count

Figure 25: Two features from a time series in the test set of application 1 in Exathlon. The anomalies injected in
this time series are of the type cpu_contention anomaly.

such example, we believe this instance warrants a closer inspection by experts in the future.

In total, we omit only one additional application. In the test set of application 10, we can observe a strong
distributional shift in one feature, see Figure 26. Since this change persists throughout the entire test time

(a) Feature in train set (b) Feature in test set

Figure 26: Feature 1_diff_avg_executor_shuffleRecordsRead_count of a time series in the test set of application
10.

series independent of any anomalies present, we suspect this might be unintentional. We still report our
results on this application in Appendix E, but exclude the application from our main evaluation. Lastly,
we also omit application 3 from our main evaluation. The time series in the test set of this application is

4https://github.com/exathlonbenchmark/exathlon/wiki/Dataset

32

https://github.com/exathlonbenchmark/exathlon/wiki/Dataset

Published in Transactions on Machine Learning Research (04/2023)

comparatively short, leaving only about 500 to 1,000 time steps for evaluation folds. Together with sparse
anomalies, leaves several folds with no anomalies at all, complicating the evaluation.

C Methods

Most approaches, in particular recent ones, rely on a combination of multiple architectural elements. Thus
we focus on the method for computing the final anomaly scores. In our setting, we expect each method to
compute an anomaly score for each time step based only on the knowledge from prior time steps. Some
methods are built to compute anomaly scores for entire time series or windows. For most, we can adapt the
method to produce local scores based on the context of a window. We discuss global methods separately at
the end of this section. In the following, we will discuss each class of methods in its own section.

C.1 Reconstruction-based methods

Based on the idea of the classical autoencoder (AE), some methods use an encoder network followed by a
decoder network to map the input data into a smaller latent space and back into the input space. The idea
is based on the intuition, that the information in the latent space should be enough to reconstruct the input
data adequately, and, because the latent space is smaller than the input space, the networks can thus not
simply learn an identity function. Since the method is generally only trained on normal data, we expect the
reconstruction to fail for anomalous inputs. Thus, such methods rely on the reconstruction error to compute
the anomaly score. Most of the time, the mean squared error (MSE) is used to train such methods and is
later used for the anomaly score. Since squaring is strictly monotone for non-negative values, the resulting
order is equivalent to the absolute error, sometimes used in its stead.

LSTM-AE Malhotra et al. (2016) propose to use an LSTM network as the encoder and as the decoder. The
decoder LSTM takes the final hidden state of the encoder LSTM as the initial hidden state and reconstructs
the input in reverse order. During training, it uses the true input data as inputs, but during testing, it uses
its own predictions.

LSTM-Max-AE Mirza & Cosan (2018) propose to use use the mean or maximum of the hidden states
of the encoder instead. Additionally, they use the latent representation as input for all time steps during
reconstruction. Contrary to Malhotra et al. (2016), they reconstruct the inputs in the same order.

MSCRED Instead of raw inputs, Zhang et al. (2019) capture the correlation of time-series segments
in signature matrices before applying a fully 2D-convolutional network and feeding its output into a 2D-
convolutional LSTM encoder and decoder.

USAD Audibert et al. (2020) use two autoencoders with a shared encoder. Training consists of two phases:
First, both train to minimize the reconstruction error. Afterward, training shifts to an adversarial setting.
Here, the second autoencoder aims to distinguish real samples from those generated by the first autoencoder,
whereas the first autoencoder tries to fool the adversary. During inference, a combination of reconstruction
and adversarial loss yields the anomaly score for each point.

TCN-S2S-AE Thill et al. (2020) propose a fully convolutional AE architecture with a temporal convolu-
tional network (TCN) in the encoder and a transposed TCN in the decoder. Instead of the usual MSE loss,
they use the LogCosh loss as their training objective. A Gaussian is fitted on the errors over the test set
during testing. However, this avoids using the method in an online setting. Therefore, we fit the Gaussian
to a held-out validation set to be comparable to other methods.

IDEAL Homayouni et al. (2020) propose another LSTM-based AE that determines its ideal window size
based on the input time series autocorrelation. However, it seems to us that eq.(2) in the paper has some
mistakes, as there is a sum over index i and i is never used, and the authors attempt to compute a confidence
interval using the cumulative distribution function of a standard normal distribution instead of its inverse.
Furthermore, the authors do not specify any details regarding the dimensionality of the latent space and

33

Published in Transactions on Machine Learning Research (04/2023)

how the decoder uses the latent vector to produce the reconstructed sequence. Thus, we cannot implement
IDEAL for our library.

GenAD Hua et al. (2022) split an input TS into 5 folds of equal size. During training, they mask a random
fraction of input features in the last fold by replacing them with the values of another randomly chosen
feature. After that, they apply several multi-head self-attention layers to the masked input sequence. Each
layer computes attention along the time and feature dimensions separately. Their outputs are interpolated
with a learnable weight to produce the final reconstructed sequence. During training, GENAD computes
the LogCosh reconstruction loss over the previously masked features. The paper does not clearly describe
the detection procedure. Hence, the following is what we implemented in the absence of specific details:
We mask each feature in the input TS once and let the GENAD model compute its reconstruction. If
the reconstruction error, measured by the LogCosh metric, is larger than some threshold, we consider that
feature anomalous. Finally, if more than a predetermined fraction of the input features at a certain point in
time is anomalous, we consider the entire TS to be anomalous at that time point.

STGAT-MAD5 Zhan et al. (2022) process an input TS by applying several 1D-convolution layers with
different kernel sizes before passing each of the resulting sequences through several graph attention and graph
convolution layers in parallel. Then they concatenate the output of those layers and feed them to a bi-LSTM
decoder, which attempts to reconstruct the original input TS. STGAT-MAD uses the squared error as both
its training loss and anomaly score.

AnomalyTransformer6 Xu et al. (2022) introduce a novel anomaly attention layer that defines a Gaussian
prior with learnable bandwidth over the temporal self-attention weights. Their architecture consists of
alternating anomaly attention and fully connected layers with residual skip connections. Aside from the
MSE between input and reconstructed time series, the authors add a symmetrized KL divergence between
the prior and actual attention weights for each anomaly attention layer to the training loss. They update
the prior parameters to minimize the KL divergence, whereas the non-prior parameters should maximize it.
The anomaly score incorporates both the divergence and reconstruction error.

C.2 Prediction-based methods

Prediction-based methods—sometimes also called forecasting methods—attempt to predict the next k ≥ 1
time steps, called prediction horizon, when given an input time series. After training on normal data, they
should be capable of accurately predicting the next time steps as long as the input time series and the points
that are to be predicted are not anomalous. However, if any point in the prediction horizon is anomalous,
the model will usually produce a higher prediction error for those points. Methods in this category use this
prediction error as the basis for their anomaly score. Most methods measure the prediction error in terms
of the MSE or mean absolute error (MAE).

LSTM-P Malhotra et al. (2015) use a multilayer LSTM to extract features and an FC NN to generate
l-steps ahead predictions. An MSE loss is used during training, and at inference, a multivariate Gaussian is
fitted to the errors of the held-out validation set. Given the learned distribution, the negative log-likelihood
corresponds to the anomaly scores.

LSTM-S2S-P Similar to LSTM-P, Filonov et al. (2016) use a multilayer LSTM. However, they use the hid-
den features at each time step to predict the forecast, making their model a sequence-to-sequence predictor.
An exponentially weighted moving average of the reconstruction errors yields the anomaly scores.

DeepANT/TCN-P Munir et al. (2018) use a TCN with max pooling and an MLP after that to predict
the next k points from the input window x. They train the model with the MAE. However, the anomaly
score is the MSE between a point and its prediction. If the prediction horizon k > 1 and there are multiple
predictions for a single time step, we take their average and compute the MSE for that.

5https://github.com/zhanjun717/STGAT
6https://github.com/thuml/Anomaly-Transformer

34

https://github.com/zhanjun717/STGAT
https://github.com/thuml/Anomaly-Transformer

Published in Transactions on Machine Learning Research (04/2023)

TCN-S2S-P He & Zhao (2019) pass the input window through a dilated causal TCN and concatenate
the outputs of the last three layers along the feature dimension to pass this to a final convolution layer with
kernel size one and D filters. The output of their method is a window of size w × D shifted by one time
step compared to the input window. TCN-S2S-P uses the MSE loss during training and fits a Gaussian
distribution to the prediction errors, just like LSTM-P. Note that during detection, we can only use the last
point in the predicted window due to the requirement that the detector must work in an online setting.

GDN7 Deng & Hooi (2021) construct a graph with features as its nodes and edges representing relations
between features. They train an embedding vector for each feature and add directed edges from each feature
to the top m ∈ N features based on cosine similarity between the feature embeddings. Thus the graph is
dynamically recreated for each input batch. After that, they apply a graph attention mechanism (Veličković
et al., 2018) to this dynamic graph and pass the outputs to an MLP that returns the prediction for the
next time step. The authors use the MSE as their training loss and the MAE, which they normalize using
each feature’s median and interquartile range, as their anomaly score. They compute the two statistics over
the test set, making GDN an offline method. However, computing the statistics over held-out normal data
performed poorly due to constant features in the datasets. Hence, we decided to use the unscaled MSE as
the anomaly score instead.

C.3 Generative methods

Generative methods model the data-generating distribution directly by training a generative model on some
latent space with a predefined prior that produces samples close to the real data. Those models usually offer
some way of computing the marginal likelihood of a data point under the model they learned, which can be
used to derive anomaly scores.

C.3.1 VAE-based methods

LSTM-VAE Sölch et al. (2016) choose both the likelihood p(x | z) and the posterior approximation q(z | x)
to be Gaussian and instantiate all NNs as single-layer LSTMs. Their encoder returns a mean and covariance
component for each time step. Furthermore, they use p(z) = N (µ, I) as a prior, where µ = (µ1, . . . , µT) is
produced by another LSTM. The anomaly score is the negative ELBO.

Donut8 Xu et al. (2018) chose to use MLPs for both the encoder and decoder. Furthermore, they mask
some time steps in the input by setting them to zero. During training, Donut maximizes a modified version
of the ELBO that accounts for the input masking. Their anomaly score is the so-called “reconstruction
probability” Ez∼q(z|x)[− log p(x | z)], although they combine it with elaborate mechanisms to reconstruct
missing data. However, those are irrelevant to this work since we do not have to deal with missing data.
Note that the original formulation only supports univariate TS. We extend it to the multivariate case by
simply applying the MLPs to the flattened multivariate input window. We further do not mask entire time
steps but random features in random time steps instead.

LSTM-DVAE Park et al. (2018) apply zero-mean Gaussian noise to any input before feeding it to the
encoder, and their prior mean for each time step is computed as

µt =
(

1 − t

T

)
v1 + t

T
vT ,

where v1, vT ∈ RD′ are learnable parameters of the model. Furthermore, they use the reconstruction proba-
bility as their anomaly score. Apart from that, the method is exactly the same as the LSTM-VAE.

GMM-GRU-VAE Guo et al. (2018) use GRUs for both their encoder and decoder. Additionally, they
chose a Gaussian mixture distribution with K components as their variational posterior approximation.

7https://github.com/d-ailin/GDN
8https://github.com/NetManAIOps/donut

35

https://github.com/d-ailin/GDN
https://github.com/NetManAIOps/donut

Published in Transactions on Machine Learning Research (04/2023)

Their prior is also a Gaussian mixture with learnable parameters µk, Σk for each of the K components.
GMM-GRU-VAE uses the reconstruction probability as its anomaly score.

BI-LSTM-VAE Pereira & Silveira (2018) propose to use a bi-directional LSTM for both the encoder
and decoder. They compute mean and variance for the latent Gaussian distribution from the last hidden
state of the encoder. Additionally, the authors apply self-attention to the sequence of encoder hidden states
and use the results to instantiate another Gaussian distribution at each time step. The samples from those
distributions are combined with the sample from the original latent distribution at each time step to form
the input for the decoder. However, the paper does not explicitly say how this sample is combined with the
samples from the attention results at each time step. We contacted the authors on this matter but did not
receive any response. Thus, we decided not to implement BI-LSTM-VAE as part of our library.

OmniAnomaly9 Su et al. (2019) use a GRU-based encoder and decoder. They also apply a planar
normalizing flow (Rezende & Mohamed, 2015) to the latent variable z after they sample it from a multivariate
normal distribution with parameters defined by the encoder. Furthermore, they choose a linear Gaussian
state space model, i.e., a Kalman filter, for the prior p(z). OmniAnomaly also uses the reconstruction
probability as its anomaly score.

SIS-VAE Li et al. (2021a) propose another GRU-based VAE. They encourage the VAE to reconstruct
smooth TS by adding a KL-divergence term between adjacent time steps term to the ELBO. Intuitively,
this term encourages that the distributions for two neighboring points in the predicted TS are similar. Like
most other VAE-based methods, SIS-VAE uses the reconstruction probability as its anomaly score.

C.3.2 GAN-based methods

BeatGAN10 Zhou et al. (2019) use a TCN-based AE as the generator and a TCN-based discriminator.
Technically speaking, their method is not really generative since they simply pass the input TS x through a
deterministic AE and treat the reconstructed sample x̂ as the “generated” input for a GAN discriminator.
Furthermore, they only use the reconstruction error (MSE) of the AE as their anomaly score, completely
discarding the discriminator after training. Nevertheless, we decided to put BeatGAN in the GAN category
because it shares some architectural elements with the other GAN-based approaches. However, it would also
be justified to think of BeatGAN as a reconstruction-based method with adversarial regularisation, similar
to USAD. The TCN AE trains to minimize the MSE between input x and reconstruction x̂ as well as the
MSE between their feature maps in the discriminator’s second-to-last layer. The discriminator, on the other
hand, is trained on the standard GAN loss. Note that the authors augment the input dataset during training
by applying dynamic time warping (Vintsyuk, 1968) to each input window and concatenating the resulting
distorted window to the original dataset.

MAD-GAN11 Li et al. (2019) use LSTM as a generator and discriminator in their GAN-based approach.
Besides the usual discriminator score, they also use a ”reconstruction“ score. They start with a random
latent variable z ∼ N (0, I) and pass it through the generator to obtain x̂. Now they use a Gaussian/RBF
kernel to compute the similarity between the current input x and the generated sample x̂ and use 1−sim(x, x̂)
as the reconstruction error. They minimize this error using gradient-based methods on z until it falls below
a certain threshold. Then, they compute the MAE between the original and reconstructed input and use it
as the anomaly score together with the discriminator’s output.

Conv-GAN Jiang et al. (2019) extract a fixed set of 16 features from an input time series and pass
this vector through a fully convolutional AE. Like BeatGAN, they consider the reconstructed vector their
“generated” sample. Conv-GANS’s discriminator is also a CNN. Furthermore, they add an additional encoder
to the generator that takes the reconstructed input and transforms it into the latent space again, trying to
match the latent vector of the original AE. However, from table 3 in the paper, it seems that the authors

9https://github.com/NetManAIOps/OmniAnomaly
10https://github.com/hi-bingo/BeatGAN
11https://github.com/LiDan456/MAD-GANs

36

https://github.com/NetManAIOps/OmniAnomaly
https://github.com/hi-bingo/BeatGAN
https://github.com/LiDan456/MAD-GANs

Published in Transactions on Machine Learning Research (04/2023)

input the 16 extracted features as a 4 × 4 matrix into the model, but they do not specify which extracted
feature goes where in the matrix. Furthermore, they also write that they do not use any feature extraction
on some datasets but do not specify how the model works in that case. Thus, we decided not to implement
Conv-GAN.

LSTM-VAE-GAN Niu et al. (2020) use the decoder of an LSTM-based VAE as the generator of a GAN
with an LSTM discriminator. Instead of computing the likelihood of the VAE’s output on the input x directly,
they pass both the original and reconstructed sequences through all but the last layer of the discriminator.
The discriminator should not just be capable of detecting a transformed sample generated from a standard
normal distribution but also transformed samples from the posterior approximation. Therefore, its loss has
an additional term to detect samples from the posterior approximation. LSTM-VAE-GAN’s anomaly score
is a convex combination of the MAE between x and its reconstruction, and the negative discriminator score.

TadGAN12 Geiger et al. (2020) propose to use bidirectional LSTMs as decoder and encoder of an AE.
Additionally, they consider the decoder and the encoder as generators of two separate Wasserstein GANs
(Arjovsky et al., 2017). One GAN uses the decoder as its generator, which maps random samples z ∈ N (0, I)
to the input data space, and its TCN-based discriminator then attempts to distinguish a real input x from
the generated sample x̂. However, the generator of the second GAN is the encoder, which maps a data point
x to the latent space. The TCN discriminator of that second GAN must now distinguish if its input is a
random sample from a standard normal distribution or an encoded data point. Note that the loss function
also contains the reconstruction error of the AE measured by the MSE. The authors compute the MSE and
the discriminator score during detection and normalize both using their means and standard deviations in
the test set. After taking the absolute value, they return a convex combination of the two scores as their
final anomaly score. Like TCN-AE, we compute the statistics of both scores during training on a held-out
part of the training set instead, turning TADGAN into an online method.

C.4 Other and hybrid methods

Some methods cannot be directly assigned to one of the classes mentioned above, since they use principles
of more than one class. For example, models could compute both reconstruction and prediction errors for an
input time series before combining them into a single anomaly score. We decided to place such methods in
their own “hybrid” category. Additionally, some methods do not fall into any of the above categories here.
This includes, for example, one-class approaches, which are more widely used for AD on other data types.

LSTM-AE OC-SVM Said Elsayed et al. (2020) train an AE with multi-layer LSTMs as encoder and
decoder. However, instead of deriving their anomaly score from the reconstruction error of the AE, the
authors train an OC-SVM (Schölkopf et al., 2001) on the latent vectors produced by applying the encoder
to the held-out clean validation set instead. This OC-SVM then yields the anomaly scores during detection.
Note that we return the raw scores, i.e., a point’s signed distance from the OC-SVM’s separating hyperplane,
instead of predictions (0 or 1) to stay consistent with the other methods in this thesis and to avoid putting
the OC-SVM at a disadvantage by using a fixed threshold. Unfortunately, the authors do not describe how
they pass the latent vector to the decoder in detail, so we decided to use the same architecture as the LSTM-
Max-AE. Although this method shares many similarities with some of the reconstruction-based methods
(especially LSTM-AE and LSTM-Max-AE), we do not consider it a reconstruction-based method since its
anomaly score is not derived from the AE’s reconstruction error.

MTAD-GAT13 Zhao et al. (2020) apply two graph attention modules (Veličković et al., 2018) on top of a
TCN, one taking features as nodes and one taking time points in a window as nodes. Both feed their output
concatenated to the original input into a GRU. Unlike GDN, they use a fully connected graph as the input
and do not build a dynamic graph. The final hidden state of the GRU serves as the input for an MLP to
predict the next time point and as the latent variable for a VAE with an MLP decoder. They additively

12https://github.com/sintel-dev/Orion
13The authors included a link to https://github.com/Azure/Multivariate-AD in their paper, claiming that this repository

contains their code and data, but as of now (20.12.2022) it is just an empty repository.

37

https://github.com/sintel-dev/Orion
https://github.com/Azure/Multivariate-AD

Published in Transactions on Machine Learning Research (04/2023)

combine the MSE of the prediction with the VAE’s ELBO loss to train the model. The anomaly score
also combines the MSE of the prediction and the reconstruction probability of the VAE using a trade-off
coefficient γ ∈ [0, 1].

THOC Shen et al. (2020) use a multilayered, dilated RNN to extract features from different temporal
scales. For each layer, they attempt to cluster the latent features using a predefined number of centers.
The assignment probabilities are then used to fuse the features with features from the previous layers. At
the last layer, they then fit an extension of the deep SVDD (Ruff et al., 2018) loss for multiple centers.
Additionally, they include the objective of predicting the next time point using the latent features from
each layer separately during training. THOC’s anomaly score is then the modified SVDD loss without the
additional prediction objective.

NCAD14 Carmona et al. (2021) use a TCN network to extract a fixed-size representation from a TS
window. The authors derive their anomaly score by comparing representaions for an entire window and the
same window without the last k points using an adapted hypersphere classifier loss (Ruff et al., 2020). A
high discrepancy between those two representations indicates an anomaly in the last k points of the window.
During training, they inject random point anomalies into the training data and augment a batch by randomly
replacing some features in the last k points using the values of another time series in the batch and labelling
the resulting TS as anomalous. Additionally, they generate new windows by randomly interpolating between
existing ones, similar to the mixup (Zhang et al., 2018) procedure.

GRELEN Zhang et al. (2022b) use multi-head self-attention along the feature dimension to encode an
input TS. More specifically, they compute the attention weights but use a softmax normalization along the
attention head axis. Those weights are then used as probabilities for a Gumbel softmax distribution, which
the authors sample from. They consider this sample as h adjacency matrices, where h is the number of
attention heads. GRELEN uses those adjacency matrices as inputs to a DCGRU (Li et al., 2018b) layer that
aims to predict the next time step for each point in the input TS. During training, GRELEN uses a VAE
style loss, where the DCGRU output is the mean of a normal distribution with constant variance, and the
Gumbel softmax distribution is considered the latent distribution. During testing, GRELEN uses the KL
divergence between the latent distribution and a predefined prior. However, the paper lacks many important
details, e.g., the value of the constant variance, and we could not understand how a second anomaly score
described in the paper works.

D Details about our evaluation procedure

Each time-series AD dataset consists of an unlabelled training set Dul := {x(1), . . . , x(N)}, where each
x(i) ∈ RTi×D is one time series and a labelled test set Dl := {(x(1), y(i)), . . . , (x(N), y(N ′)}, where x(i) ∈ RTi×D

and y(i) ∈ {0, 1}T ′
i are the ground truth anomaly labels. We split the unlabelled data into two distinct sets

Dtrain and Dval1 such that Dtrain contains 75% of the available time points and Dval1 contains 25%. If N > 1,
we can achieve this split (approximately) by assigning the entire time series to either set. However, several
datasets (e.g., SWaT, WADI, SMD) contain only as a single time series in both their labeled and unlabelled
data. Hence, we decided to split each time series along the time dimension and assigned the resulting sub-
sequences to Dtrain and Dval1, respectively. We train each method for up to 100 epochs on Dtrain, using
early stopping on the validation loss calculated over Dval1 for all methods except USAD and the GAN-based
approaches. Some methods also require Dval1 for fitting parameters of their anomaly detection module,
e.g., mean and covariance matrices over reconstruction errors to use in a Gaussian distribution. USAD,
BeatGAN, MAD-GAN, and LSTM-VAE-GAN use neither early stopping nor do their detectors require any
parameter fitting, so we train them on the entire unlabelled data.

Since we perform a grid search to tune each method’s hyperparameters, we also need to split the labeled
data into another validation set Dval2 and a test set Dtest. Using a simple split here might introduce an
unwanted bias into our evaluation for the case where only one time series of labeled data is available. In
this case, the anomalies in the validation set might be of a different type compared to the ones in the test

14https://github.com/Francois-Aubet/gluon-ts/tree/adding_ncad_to_nursery/src/gluonts/nursery/ncad/src/ncad

38

https://github.com/Francois-Aubet/gluon-ts/tree/adding_ncad_to_nursery/src/gluonts/nursery/ncad/src/ncad

Published in Transactions on Machine Learning Research (04/2023)

set. Since the split is arbitrary, this might put some methods at an unfair disadvantage if we report only the
scores on the test set. We cannot entirely eliminate this issue, but we attempt to mitigate it by performing
a modified 5-fold cross validation. For that, we split the time series into five equally sized folds and use
each fold as the validation set once. The remaining folds, excluding the ones directly next to the validation
fold to reduce possible statistical interdependencies, form the test set. We choose the hyperparameters that
perform best on the validation set in terms of the best F1∗-score and evaluate the corresponding model on
the test set. The scores reported in our tables are averages over all five folds. To ensure a fair comparison
between methods that incorporate their run time/computational complexity, we adapt the hyperparameter
grid size of each method, s.t. it takes roughly 48h to evaluate them on a dataset collection like Exathlon or
SMD. We provide the hyperparameter grid for each method as part of our source code repository15.

All methods use sliding windows as their inputs, although window size and step size may differ between
them as we consider them to be hyperparameters. Furthermore, we sub-sample the Exathlon dataset by
partitioning each time series into windows of size five and computing the mean over each window.

We implemented all methods and datasets as part of our TimeSeAD library based on PyTorch (Paszke et al.,
2019). To keep track of our training and evaluation experiments, we also developed a plugin for our library
based on sacred (Greff et al., 2017). This plugin automatically saves all results, configuration, random
seeds, and artifacts, e.g., model weights, that our experiments produce. Furthermore, we provide a list of all
packages we use with their corresponding version numbers as part of our source code repository15.

E Detailed Benchmark Results

In the following, we present additional results from our benchmark experiments. Table Table 3 shows the
ranked average scores for Exathlon and SMD. Here, we average the scores in Exathlon and SMD only over
the datasets which we think fit the purpose of evaluating time series AD methods. Details about why and
which specific datasets are excluded can be found in Appendix B. To fit on one paper, we use the following
abbreviations: F pw

1 and AUPRCpw stand for the point-wise best F1 score and area under the precision-
recall curve (AUPRC), respectively, with ts as superscript for the appropriate F1, and AUPRC introduce by
(Tatbul et al., 2018), and, with our as superscript for our modified metric.

Table 4, Table 5 and Table 6 display detailed results for Exathlon based on point-wise, (Tatbul et al., 2018)
and our metric, respectively. Whereas, Table 7 to Table 12 show results on the SMD datasets. For a clear
visual appearance, all scores are multiplied by 100. Note that due to spatial constraints, we have limited
ourselves only to presenting the SMD datasets, which we find to be best applicable for evaluation. See
Appendix B for a detailed analysis of which and why we ignore specific datasets. Full results on all SMD
servers will be made available together with the publication of our library.

15We provide the code in the supplementary material, and later through a GitHub link.

39

Published
in

Transactions
on

M
achine

Learning
R

esearch
(04/2023)

Table 3: Ranked average scores of relevant datasets for Exathlon and SMD on six different evaluation metrics.

Exathlon SMD

F pw
1 AUPRCpw F ts

1 AUPRCts F our
1 AUPRCour F pw

1 AUPRCpw F ts
1 AUPRCts F our

1 AUPRCour

LSTM-AE 21 20 16 22 22 21 1 1 5 1 1 1
LSTM-Max-AE 14 13 14 17 20 16 21 22 21 19 17 20

MSCRED 1 3 3 1 1 3 16 13 9 13 20 19

FC-AE 5 4 23 12 10 4 7 9 16 5 7 9
USAD 9 5 21 14 15 5 19 17 12 14 15 16

TCN-AE 4 17 1 2 3 17 18 24 2 24 21 24

GenAD 3 1 28 4 4 1 24 14 27 12 24 14

STGAT-MAD 6 6 12 6 14 9 5 4 7 4 5 4
AnomalyTransformer 27 27 26 21 27 27 27 27 14 25 27 25

LSTM-P 22 22 6 26 25 24 2 2 4 2 2 2
LSTM-S2S-P 18 21 2 3 11 22 13 15 1 10 18 21

DeepAnt 10 10 17 9 7 7 10 10 18 11 12 10

TCN-S2S-P 19 19 13 13 19 19 3 3 6 3 3 3
GDN 2 2 15 10 2 2 9 6 15 9 10 9
LSTM-VAE 11 11 22 16 6 11 11 11 20 15 9 11

Donut 15 16 5 9 16 15 6 5 11 6 6 6
LSTM-DVAE 16 15 24 25 17 18 12 19 24 22 13 15

GMM-GRU-VAE 7 12 18 23 5 10 4 9 10 7 4 5
OmniAnomaly 23 24 19 24 21 20 15 16 23 21 11 12

SIS-VAE 13 9 11 11 12 6 9 7 17 9 9 7
BeatGAN 20 14 27 19 9 9 17 18 19 17 16 17

MAD-GAN 12 9 20 18 18 14 23 23 3 18 23 23

LSTM-VAE-GAN 17 18 9 7 13 13 22 20 25 23 19 18

TadGAN 9 7 10 5 9 12 20 21 9 16 22 22

LSTM-AE OC-SVM 26 25 25 27 26 26 26 26 26 26 26 27

MTAD-GAT 25 23 7 15 24 23 14 12 22 20 14 13

NCAD 28 28 4 28 28 28 28 28 13 28 28 28

THOC 24 26 9 20 23 25 25 25 28 27 25 26

40

Published
in

Transactions
on

M
achine

Learning
R

esearch
(04/2023)

Table 4: Cross-validation results on Exathlon evaluated with the point wise metric.

Best F1-score (point wise) AUPRC (point wise)

App ID App ID
1 2 3 4 5 6 9 10 avg(rank) 1 2 3 4 5 6 9 10 avg(rank)

LSTM-AE 47.3 77.4 57.1 77.0 45.0 48.1 34.5 43.7 53.8(20) 49.5 75.0 51.7 68.5 43.8 34.9 32.3 31.6 48.4(19)

LSTM-Max-AE 64.0 63.1 55.4 76.1 45.1 50.8 47.2 45.2 55.9(14) 69.9 60.8 51.6 73.8 42.8 36.4 38.0 38.2 51.4(12)

MSCRED 65.0 72.3 79.1 90.5 50.4 63.1 48.9 54.3 65.4(1) 57.0 66.3 75.9 89.1 48.0 40.9 44.2 46.9 58.5(1)
FC-AE 64.4 62.4 55.2 85.5 48.5 54.5 42.3 46.9 57.5(5) 69.7 61.6 51.3 83.9 45.9 38.9 39.7 40.4 53.9(6)
USAD 61.8 62.2 49.5 87.7 52.1 53.3 38.5 48.3 56.7(8) 67.2 61.5 46.8 84.1 48.4 40.4 36.4 40.5 53.2(8)
TCN-AE 55.8 66.5 40.7 83.6 59.2 51.7 49.0 44.8 56.4(12) 52.1 56.5 35.1 72.9 57.3 32.5 42.6 34.5 47.9(20)

GenAD 68.5 57.4 42.4 91.7 50.9 68.5 34.2 38.2 56.5(10) 70.8 59.4 52.1 84.7 51.8 67.0 37.9 32.4 57.0(3)
STGAT-MAD 56.0 62.5 62.3 87.7 46.7 64.4 39.1 46.2 58.1(3) 60.3 61.7 58.4 83.6 45.5 50.1 36.0 39.6 54.4(4)
AnomalyTransformer 33.2 41.6 48.9 83.9 29.4 63.6 30.5 26.5 44.7(27) 27.0 43.4 42.7 80.3 27.1 51.4 25.3 14.4 38.9(27)

LSTM-P 47.9 71.2 46.5 75.2 47.4 38.4 41.0 43.4 51.4(22) 48.7 66.2 50.5 62.6 46.3 25.3 38.2 29.2 45.9(23)

LSTM-S2S-P 58.3 42.8 54.1 91.8 49.0 52.9 43.1 42.3 54.3(18) 53.8 31.6 45.6 88.8 46.8 38.0 31.1 30.5 45.8(24)

DeepAnt 57.7 60.4 45.9 89.2 50.3 55.1 41.4 46.2 55.8(16) 62.8 54.7 39.3 84.1 49.5 39.0 38.1 38.2 50.7(14)

TCN-S2S-P 53.1 67.5 53.3 86.0 44.8 47.7 38.1 39.6 53.8(19) 56.2 62.5 52.6 77.7 44.0 32.1 35.2 28.2 48.6(18)

GDN 74.8 64.3 68.2 83.3 47.7 55.4 48.5 48.8 61.4(2) 79.7 62.6 65.5 80.5 47.4 38.5 43.1 42.0 57.4(2)

LSTM-VAE 47.8 62.1 59.9 84.8 63.1 60.2 33.7 46.8 57.3(6) 49.9 61.0 55.0 81.9 63.9 48.2 22.7 40.4 52.9(10)

Donut 45.2 61.2 60.4 88.9 54.2 53.3 40.1 48.2 56.4(11) 48.4 54.3 56.3 83.8 53.5 38.8 36.4 41.7 51.6(11)

LSTM-DVAE 51.6 57.4 60.5 86.7 59.2 50.6 35.1 46.0 55.9(13) 53.0 57.5 55.8 81.8 55.5 42.2 26.9 37.8 51.3(13)

GMM-GRU-VAE 50.0 62.9 48.0 82.7 47.2 63.7 49.2 42.9 55.8(15) 52.0 59.0 45.8 78.2 36.1 56.9 43.0 29.8 50.1(15)

OmniAnomaly 45.5 58.5 62.0 41.0 61.6 62.3 40.1 44.3 51.9(21) 42.9 59.0 59.7 31.1 60.3 51.2 35.7 40.0 47.5(21)

SIS-VAE 51.9 61.7 63.9 88.3 51.1 58.8 36.8 43.8 57.0(7) 57.2 61.2 59.0 84.9 48.3 44.4 33.8 38.6 53.5(7)

BeatGAN 58.8 61.3 37.0 82.7 44.3 50.9 35.4 40.0 51.3(23) 58.9 61.7 37.6 81.7 42.8 41.4 33.2 33.9 48.9(17)

MAD-GAN 61.3 61.7 60.1 85.9 48.8 54.9 37.8 42.6 56.6(9) 66.5 63.3 56.8 79.2 45.5 38.6 36.4 38.3 53.1(9)
LSTM-VAE-GAN 58.6 56.1 57.2 89.3 35.1 54.6 45.2 45.4 55.2(17) 57.8 51.4 52.4 87.5 30.4 41.0 40.8 33.6 49.4(16)

TadGAN 74.8 62.6 65.3 80.1 48.9 50.3 38.4 44.1 58.1(4) 79.4 61.4 60.1 77.8 44.6 37.7 34.3 37.3 54.1(5)

LSTM-AE OC-SVM 51.3 67.2 36.3 73.8 41.4 38.7 35.0 40.8 48.0(26) 52.7 64.4 29.7 63.0 35.4 30.6 32.0 35.1 42.8(26)

MTAD-GAT 50.3 60.2 49.5 51.3 51.2 57.6 37.7 46.4 50.5(24) 55.0 61.0 45.3 39.3 47.3 47.4 32.3 40.4 46.0(22)

NCAD 29.7 23.1 23.2 22.2 16.7 19.0 26.2 24.5 23.1(28) 13.0 8.6 9.8 12.2 6.3 10.5 16.2 12.1 11.1(28)

THOC 32.5 54.7 41.1 90.5 37.1 47.4 46.4 49.3 49.9(25) 22.8 50.4 30.8 89.6 29.0 36.3 44.6 42.7 43.3(25)

41

Published
in

Transactions
on

M
achine

Learning
R

esearch
(04/2023)

Table 5: Cross-validation results on Exathlon evaluated with the metric from Tatbul et al. (2018).

Best F1-score (Tatbull et al.) AUPRC (Tatbull et al.)

App ID App ID
1 2 3 4 5 6 9 10 avg(rank) 1 2 3 4 5 6 9 10 avg(rank)

LSTM-AE 60.5 47.2 28.4 27.6 27.2 44.1 40.0 57.4 41.5(22) 43.9 51.7 28.0 51.1 30.8 42.4 22.9 22.9 36.7(23)

LSTM-Max-AE 61.6 47.6 45.0 35.3 17.3 25.5 61.7 66.0 45.0(12) 49.0 41.8 39.2 73.0 31.5 33.6 27.7 24.6 40.0(14)

MSCRED 68.6 69.4 76.4 72.1 48.7 64.9 77.0 56.1 66.7(2) 67.2 60.7 60.9 86.7 49.1 58.1 52.0 39.0 59.2(1)
FC-AE 62.3 37.9 44.8 33.8 20.9 32.5 45.1 61.0 42.3(15) 50.4 38.8 30.6 71.9 34.3 44.6 27.1 24.9 40.3(13)

USAD 51.0 38.9 54.7 38.2 26.5 38.3 45.3 47.8 42.6(14) 49.7 39.8 39.7 72.1 37.5 42.4 23.4 25.7 41.3(12)

TCN-AE 65.3 69.5 64.4 79.3 77.3 66.9 75.2 72.3 71.3(1) 56.3 50.7 34.1 76.0 58.9 47.5 48.8 40.2 51.6(2)
GenAD 38.1 34.8 37.5 54.3 19.3 34.0 16.4 34.3 33.6(28) 53.4 47.1 42.6 81.9 38.4 75.2 28.8 25.1 49.1(4)
STGAT-MAD 60.9 47.7 41.9 33.4 25.2 41.2 49.4 69.9 46.2(8) 46.7 43.8 36.4 72.4 35.7 59.6 24.4 26.1 43.1(7)
AnomalyTransformer 45.1 15.4 30.0 43.4 13.3 56.3 56.1 21.0 35.1(27) 33.3 34.4 32.9 73.7 23.2 52.7 29.0 13.8 36.6(24)

LSTM-P 57.7 49.7 39.1 26.4 26.7 45.1 79.0 68.5 49.1(6) 43.0 48.9 17.0 48.1 34.5 27.9 32.7 27.7 35.0(26)

LSTM-S2S-P 60.5 75.0 60.9 82.2 75.4 58.6 55.5 55.7 65.5(3) 54.6 43.7 35.2 89.8 60.4 44.8 39.0 35.8 50.4(3)
DeepAnt 60.5 44.5 46.2 38.2 32.9 38.5 31.2 46.4 42.3(16) 49.2 41.7 29.3 72.6 41.3 49.9 24.8 24.9 41.7(11)

TCN-S2S-P 54.8 52.8 36.3 27.5 32.4 45.1 42.7 61.1 44.1(13) 45.9 44.8 25.3 64.8 36.2 45.7 27.8 20.9 38.9(17)

GDN 61.1 41.8 35.9 32.9 24.1 38.2 48.6 50.9 41.7(20) 57.3 38.5 39.9 69.0 36.2 44.2 31.7 24.9 42.7(8)

LSTM-VAE 51.1 42.1 39.9 23.8 31.8 38.8 48.5 58.2 41.8(18) 39.8 42.6 30.0 66.6 42.5 50.1 16.6 22.4 38.8(18)

Donut 58.4 59.1 42.8 32.6 31.1 48.6 78.9 65.4 52.1(5) 45.0 45.2 33.5 67.4 36.3 50.1 34.7 24.0 42.0(9)
LSTM-DVAE 50.2 34.7 41.3 30.9 30.2 33.8 51.1 48.4 40.1(24) 45.4 31.6 36.1 68.3 37.6 37.3 18.8 21.5 37.1(22)

GMM-GRU-VAE 52.6 35.3 33.8 26.8 25.2 42.8 60.2 56.4 41.7(21) 37.2 38.7 22.9 59.1 27.3 45.4 33.8 20.1 35.6(25)

OmniAnomaly 58.6 35.3 43.3 21.6 33.8 36.1 57.3 42.1 41.0(23) 52.0 40.0 39.9 27.7 43.1 50.2 26.9 20.2 37.5(20)

SIS-VAE 56.1 33.9 43.5 36.0 33.9 39.8 63.5 68.5 46.9(7) 43.5 39.5 38.3 73.3 39.0 50.4 28.6 23.3 42.0(10)

BeatGAN 28.2 58.0 55.9 35.2 22.2 25.0 39.8 38.9 37.9(26) 37.1 43.0 19.8 75.1 36.3 40.2 22.3 24.5 37.3(21)

MAD-GAN 45.5 38.6 40.8 26.7 48.5 32.2 46.8 55.2 41.8(17) 47.5 42.4 37.1 65.9 38.8 38.1 23.3 22.9 39.5(16)

LSTM-VAE-GAN 58.4 56.0 46.4 45.1 30.2 40.1 43.5 49.7 46.2(9) 50.1 45.7 35.9 77.9 30.6 42.4 34.6 28.9 43.3(6)
TadGAN 56.7 48.4 49.9 43.1 47.4 32.1 38.2 49.4 45.7(10) 60.9 47.1 38.8 75.8 45.7 39.8 29.4 26.5 45.5(5)

LSTM-AE OC-SVM 50.5 30.4 36.9 49.0 30.1 37.3 32.6 46.4 39.1(25) 39.8 38.0 30.5 55.6 34.0 30.2 22.0 19.7 33.7(27)

MTAD-GAT 62.4 43.3 38.2 35.2 40.4 39.5 55.8 47.2 45.2(11) 45.7 44.9 29.7 60.8 36.1 46.0 27.5 25.6 39.5(15)

NCAD 79.1 64.1 58.3 54.8 52.6 38.7 68.0 47.9 57.9(4) 46.2 27.5 20.4 52.8 27.2 15.0 23.8 18.1 28.9(28)

THOC 66.4 37.6 40.9 31.7 37.1 41.9 54.6 23.5 41.7(19) 30.0 33.5 25.1 78.1 33.2 42.1 36.8 21.4 37.5(19)

42

Published
in

Transactions
on

M
achine

Learning
R

esearch
(04/2023)

Table 6: Cross-validation results on Exathlon evaluated with our metric.

Best F1-score (ours) AUPRC (ours)

App ID App ID
1 2 3 4 5 6 9 10 avg(rank) 1 2 3 4 5 6 9 10 avg(rank)

LSTM-AE 53.7 64.7 60.6 74.8 43.7 48.7 31.7 44.2 52.8(23) 56.3 63.1 42.9 66.6 42.4 36.0 29.1 35.7 46.5(21)

LSTM-Max-AE 67.3 50.8 59.1 73.2 44.0 51.7 41.5 37.4 53.1(21) 72.2 49.3 53.6 72.7 44.4 40.4 33.9 31.6 49.7(16)

MSCRED 64.2 64.7 84.0 90.9 49.0 63.5 50.1 54.8 65.1(1) 56.4 62.4 29.8 89.6 47.7 41.6 44.4 48.3 52.5(7)
FC-AE 68.1 52.1 71.3 84.0 47.4 55.1 38.9 42.6 57.4(5) 72.8 52.7 69.9 85.4 47.8 42.7 37.8 36.7 55.8(3)
USAD 65.5 52.6 54.6 85.6 51.3 53.4 34.4 43.8 55.1(16) 70.4 53.4 56.5 84.3 50.0 43.6 32.9 36.8 53.5(4)
TCN-AE 64.8 57.3 61.9 83.1 52.8 52.2 49.8 41.5 57.9(3) 59.6 51.2 36.9 73.0 51.8 32.6 41.2 29.3 47.0(19)

GenAD 70.6 47.7 42.4 89.7 52.3 68.0 25.2 33.1 53.6(19) 74.5 53.1 51.6 87.2 53.1 67.4 35.7 32.3 56.8(2)
STGAT-MAD 59.5 52.6 69.3 86.2 43.9 66.3 34.7 40.8 56.7(11) 64.2 53.3 55.7 84.7 43.3 51.4 33.3 35.5 52.7(6)
AnomalyTransformer 40.1 33.3 44.3 81.0 28.9 63.9 29.2 24.9 43.2(27) 35.3 37.1 44.0 77.6 26.3 50.8 24.6 16.7 39.1(27)

LSTM-P 55.1 54.1 68.6 73.2 52.8 38.3 37.3 43.1 52.8(22) 57.5 53.2 55.2 61.4 51.5 26.0 34.5 32.6 46.5(22)

LSTM-S2S-P 61.8 52.2 60.5 91.2 41.4 55.2 43.5 38.1 55.5(14) 55.1 34.9 53.1 87.0 39.5 37.0 32.0 30.3 46.1(24)

DeepAnt 63.4 54.8 64.7 87.3 51.0 56.0 36.6 41.0 56.8(10) 66.9 50.5 47.2 85.1 49.9 42.9 36.2 33.4 51.5(10)

TCN-S2S-P 58.3 56.5 68.8 83.7 50.0 47.7 34.6 38.4 54.8(17) 62.0 54.7 35.2 76.0 48.1 32.1 33.2 30.9 46.5(20)

GDN 76.5 56.9 69.4 81.7 46.6 57.9 46.1 42.5 59.7(2) 80.4 55.4 68.7 82.0 45.1 44.3 40.5 38.4 56.8(1)

LSTM-VAE 54.7 53.0 68.6 83.2 65.5 59.1 34.6 40.3 57.4(6) 57.9 53.5 40.4 81.8 65.3 47.2 22.8 37.6 50.8(14)

Donut 54.2 50.9 71.0 86.8 57.0 51.9 39.3 44.5 56.9(8) 56.5 46.7 51.8 82.4 57.3 37.5 33.6 41.9 51.0(12)

LSTM-DVAE 56.2 50.0 67.9 81.3 63.8 47.8 34.4 42.4 55.5(15) 55.6 48.4 53.8 77.2 61.1 39.5 26.4 38.2 50.0(15)

GMM-GRU-VAE 54.7 54.7 67.3 79.4 53.5 61.9 47.9 40.5 57.5(4) 58.2 52.8 53.9 76.6 42.1 56.2 42.8 34.1 52.1(9)
OmniAnomaly 53.4 51.6 69.5 44.7 68.3 62.3 37.8 39.5 53.4(20) 53.5 52.7 57.2 37.9 67.4 51.7 33.4 35.4 48.7(18)

SIS-VAE 56.8 52.7 70.3 88.2 53.0 61.1 32.4 38.8 56.6(12) 61.6 53.3 55.9 87.1 52.1 48.7 30.8 33.9 52.9(5)

BeatGAN 65.9 64.7 68.9 82.3 44.0 54.3 36.5 38.4 56.9(9) 67.1 55.4 31.0 81.0 49.1 44.4 33.5 32.7 49.3(17)

MAD-GAN 64.4 52.7 67.9 84.0 43.3 56.5 32.1 36.2 54.6(18) 68.3 54.4 54.7 79.3 42.4 43.2 32.4 33.1 51.0(13)

LSTM-VAE-GAN 63.9 55.7 62.1 89.3 39.5 54.0 41.6 44.7 56.3(13) 67.0 49.7 49.1 89.7 35.4 42.5 37.9 38.3 51.2(11)

TadGAN 78.6 58.8 70.4 77.7 46.1 52.7 33.0 39.5 57.1(7) 82.7 54.3 55.1 75.1 44.0 40.8 31.5 34.3 52.2(8)

LSTM-AE OC-SVM 57.5 54.9 46.0 71.7 38.5 39.7 29.1 37.2 46.8(26) 58.2 53.1 48.9 63.5 33.3 32.4 27.3 34.2 43.9(26)

MTAD-GAT 54.6 54.0 67.7 53.0 55.5 56.4 40.0 36.6 52.2(25) 59.5 53.4 52.0 42.4 50.0 46.6 33.3 34.3 46.4(23)

NCAD 34.1 23.1 38.9 22.3 17.8 19.9 26.5 27.2 26.2(28) 17.5 7.3 21.1 12.6 6.8 11.4 18.2 16.9 14.0(28)

THOC 41.3 45.9 59.3 89.9 43.7 43.6 49.3 45.9 52.4(24) 32.7 43.8 41.3 91.4 37.4 33.0 45.4 43.3 46.0(25)

43

Published
in

Transactions
on

M
achine

Learning
R

esearch
(04/2023)

Table 7: Cross-validation results on SMD evaluated with point-wise F1.

Server ID
1 6 8 9 10 11 13 14 16 17 20 21 24 26 27 avg(rank)

LSTM-AE 47.1 68.9 29.4 33.9 60.4 30.6 56.8 64.5 51.9 74.6 14.7 42.3 65.3 23.4 78.1 49.5(1)
LSTM-Max-AE 52.7 32.2 23.0 33.9 33.0 29.7 58.1 44.4 35.8 56.2 14.0 11.8 52.4 25.4 61.3 37.6(21)

MSCRED 53.9 49.5 43.7 28.0 40.2 22.1 48.8 37.6 48.2 60.8 12.3 24.4 47.5 20.5 57.7 39.7(16)

FC-AE 49.0 56.4 30.7 34.2 48.7 27.7 56.9 58.4 44.8 64.8 14.4 32.7 57.0 23.5 79.4 45.2(7)
USAD 37.7 48.6 20.9 33.8 35.7 38.0 56.9 58.6 34.6 56.8 13.5 27.9 46.6 17.9 58.4 39.1(19)

TCN-AE 47.0 52.7 36.6 23.9 33.9 23.6 44.7 35.9 44.4 63.3 16.8 24.2 55.2 31.5 52.8 39.1(18)

GenAD 44.6 21.0 12.7 26.6 22.4 15.7 52.5 46.7 31.2 55.2 10.5 7.1 48.4 21.1 59.6 31.7(24)

STGAT-MAD 48.1 64.5 24.2 34.7 55.9 26.6 56.7 58.1 49.5 65.6 15.9 33.0 59.5 25.4 78.2 46.4(5)
AnomalyTransformer 22.9 49.1 21.8 20.6 25.7 24.8 11.5 21.0 25.1 27.8 11.4 27.1 49.6 23.7 13.8 25.1(27)

LSTM-P 54.7 73.8 36.5 32.7 58.2 31.8 56.6 63.0 49.5 69.5 14.4 37.1 59.2 23.9 78.7 49.3(2)
LSTM-S2S-P 53.0 54.5 43.1 27.2 28.2 28.7 43.8 34.8 47.7 54.4 14.4 34.8 58.0 29.5 55.7 40.5(13)

DeepAnt 50.6 60.4 26.8 35.0 42.2 28.9 56.2 59.6 45.7 61.4 14.3 30.0 60.6 24.8 61.0 43.8(10)

TCN-S2S-P 41.9 73.2 34.6 34.1 52.5 31.9 54.0 55.1 51.5 78.3 16.2 36.3 60.7 26.0 80.9 48.5(3)
GDN 58.9 58.6 32.0 34.2 53.9 26.3 56.4 56.6 43.9 63.3 13.4 30.0 59.9 20.2 68.2 45.0(9)

LSTM-VAE 45.7 62.1 22.9 26.7 60.5 32.0 57.7 54.1 44.9 50.0 14.5 39.2 57.2 21.9 63.9 43.6(11)

Donut 42.7 62.8 27.6 35.4 63.2 40.0 50.1 60.9 40.6 70.7 17.1 29.5 64.3 14.5 74.1 46.2(6)
LSTM-DVAE 40.1 61.3 24.0 23.4 51.7 35.7 52.8 62.2 42.4 39.1 15.7 38.0 58.7 22.9 49.0 41.1(12)

GMM-GRU-VAE 44.4 64.2 25.3 34.1 62.0 36.0 55.6 58.7 40.3 71.2 16.1 32.1 60.2 22.9 77.7 46.7(4)
OmniAnomaly 38.9 63.1 23.6 33.3 32.7 31.2 60.6 50.8 50.1 42.1 13.7 24.1 54.1 13.8 73.4 40.4(15)

SIS-VAE 53.9 63.0 27.5 34.6 47.4 27.4 56.9 59.8 43.5 64.0 15.0 28.8 55.4 23.7 75.8 45.1(8)

BeatGAN 44.5 48.8 24.1 33.2 45.5 33.2 57.0 45.1 38.3 58.8 13.4 24.7 42.8 23.0 57.8 39.3(17)

MAD-GAN 41.5 33.9 30.2 33.9 44.6 20.3 38.8 45.7 42.4 47.6 15.4 9.8 32.1 25.7 32.7 33.0(23)

LSTM-VAE-GAN 47.8 45.0 21.2 36.7 51.8 25.3 58.0 35.9 28.4 51.6 14.0 19.6 31.3 27.7 60.6 37.0(22)

TadGAN 49.7 28.2 14.1 33.9 51.1 31.1 58.3 45.8 35.3 54.9 14.9 21.9 54.3 27.0 48.9 38.0(20)

LSTM-AE OC-SVM 16.9 25.2 13.7 19.2 18.3 31.5 22.0 35.2 19.7 50.5 14.6 10.7 40.3 27.6 56.7 26.8(26)

MTAD-GAT 40.3 67.8 13.2 33.2 51.6 50.2 44.8 47.7 40.7 39.8 12.6 31.9 50.9 26.5 55.1 40.4(14)

NCAD 11.6 21.4 11.4 18.4 9.7 12.3 4.1 3.9 8.6 7.1 10.7 13.9 7.1 9.6 13.3 10.9(28)

THOC 52.7 37.6 20.6 23.8 23.9 24.2 25.6 35.1 21.7 17.1 11.2 18.8 31.9 20.5 54.0 27.9(25)

44

Published
in

Transactions
on

M
achine

Learning
R

esearch
(04/2023)

Table 8: Cross-validation results on SMD evaluated with point-wise AUPRC.

Server ID
1 6 8 9 10 11 13 14 16 17 20 21 24 26 27 avg(rank)

LSTM-AE 32.9 68.9 23.6 23.4 59.3 26.8 48.7 62.8 51.9 73.7 8.3 32.2 62.4 23.8 76.8 45.0(1)
LSTM-Max-AE 41.6 17.2 20.3 23.2 21.5 26.2 49.4 35.6 35.9 54.0 6.5 7.0 48.9 24.6 57.5 31.3(22)

MSCRED 48.3 36.6 41.0 15.0 25.7 16.2 42.8 47.4 45.6 60.2 5.7 19.3 47.1 17.4 55.5 34.9(13)

FC-AE 42.0 46.1 26.2 24.7 41.8 22.8 47.1 51.7 42.7 63.5 5.4 24.1 53.6 23.6 77.6 39.5(9)
USAD 31.3 39.6 15.7 21.3 29.7 36.8 46.8 50.4 28.4 54.4 7.1 19.5 42.6 18.5 54.3 33.1(17)

TCN-AE 27.4 36.8 24.1 13.3 14.4 17.4 22.2 21.8 41.1 57.9 8.8 13.3 36.1 27.6 33.9 26.4(24)

GenAD 40.6 21.3 25.8 19.3 35.3 23.0 49.7 55.5 34.6 60.9 8.7 12.6 50.5 20.8 55.4 34.3(14)

STGAT-MAD 38.2 56.8 22.0 25.2 50.9 23.2 48.9 55.1 49.4 65.0 8.2 24.5 59.9 25.6 73.8 41.8(4)
AnomalyTransformer 25.0 37.6 15.7 14.3 23.8 17.0 11.1 11.4 19.6 26.5 6.1 18.5 42.6 22.0 7.7 19.9(27)

LSTM-P 48.3 71.8 29.4 23.7 54.9 29.7 49.1 54.2 50.2 67.6 7.6 28.0 59.5 23.1 75.5 44.8(2)
LSTM-S2S-P 50.2 37.0 39.0 16.3 20.1 19.2 39.8 28.4 46.2 50.4 7.1 27.8 49.2 26.2 52.2 34.0(15)

DeepAnt 42.0 52.3 21.3 25.2 35.2 23.3 48.4 52.9 43.6 58.3 6.5 18.7 61.7 24.0 58.7 38.1(10)

TCN-S2S-P 31.0 72.3 27.2 24.0 47.2 29.2 48.0 46.7 51.6 76.7 9.1 27.1 60.5 23.5 77.3 43.4(3)
GDN 50.6 50.6 28.4 24.0 50.7 23.8 48.6 48.9 40.6 61.3 5.9 19.4 61.6 20.2 64.7 40.0(6)

LSTM-VAE 27.1 51.1 17.4 19.3 48.3 31.4 50.3 43.5 41.8 47.6 7.2 24.8 53.0 17.1 60.7 36.0(11)

Donut 27.1 52.1 19.7 26.8 59.1 33.1 41.2 53.8 40.4 70.6 10.7 21.1 66.0 12.0 71.5 40.3(5)
LSTM-DVAE 22.8 51.1 16.6 14.7 34.3 34.9 45.7 45.4 39.5 32.9 6.5 24.1 53.2 19.1 43.0 32.2(19)

GMM-GRU-VAE 31.8 53.8 19.2 26.4 44.9 35.7 47.2 51.2 35.9 68.3 6.8 17.3 61.3 22.3 74.8 39.8(8)
OmniAnomaly 22.2 54.1 17.7 26.5 18.0 28.4 52.2 36.8 52.0 41.3 8.3 12.5 56.2 10.0 70.5 33.8(16)

SIS-VAE 43.8 57.9 22.2 24.8 41.5 22.3 49.2 53.6 42.7 60.9 6.4 19.8 55.0 24.1 73.3 39.8(7)

BeatGAN 35.8 34.8 21.3 21.4 39.5 29.0 47.0 37.8 33.2 55.5 6.2 16.4 39.1 23.6 52.2 32.8(18)

MAD-GAN 30.8 26.6 20.5 20.8 39.9 16.0 27.1 32.9 43.2 48.2 6.5 4.4 26.9 22.9 31.2 26.5(23)

LSTM-VAE-GAN 38.7 37.3 18.1 30.5 46.2 16.4 51.0 33.4 31.2 49.0 6.9 13.6 25.4 29.1 55.9 32.2(20)

TadGAN 34.7 16.3 9.1 22.1 44.3 26.8 47.5 40.4 31.2 52.0 8.0 13.0 51.4 24.9 48.6 31.4(21)

LSTM-AE OC-SVM 8.4 19.7 9.9 9.2 12.8 23.7 13.3 28.2 17.5 45.8 7.5 4.8 32.1 26.7 48.3 20.5(26)

MTAD-GAT 28.1 63.4 9.2 22.5 49.7 49.3 40.2 38.5 35.8 33.7 6.4 24.6 49.0 22.6 51.0 34.9(12)

NCAD 5.2 14.4 6.4 8.4 3.4 4.3 1.4 1.8 4.2 3.1 4.9 7.8 2.3 5.3 5.5 5.2 (28)

THOC 42.6 24.8 16.5 13.7 14.5 14.3 19.3 32.8 17.6 10.8 4.9 10.8 20.5 15.0 52.6 20.7(25)

45

Published
in

Transactions
on

M
achine

Learning
R

esearch
(04/2023)

Table 9: Cross-validation results on SMD evaluated with the F1 metric introduced by (Tatbul et al., 2018).

Server ID
1 6 8 9 10 11 13 14 16 17 20 21 24 26 27 avg(rank)

LSTM-AE 17.8 47.5 28.8 69.6 54.3 39.8 52.0 43.2 60.1 50.7 23.8 42.8 48.3 61.5 51.1 46.1(5)
LSTM-Max-AE 26.7 50.3 22.5 72.8 35.7 15.0 54.4 25.7 62.9 34.6 14.4 15.6 45.5 59.3 35.3 38.0(21)

MSCRED 37.9 37.4 36.9 58.6 41.5 32.9 50.3 9.7 61.7 71.2 25.1 8.1 52.4 64.4 64.9 43.5(8)
FC-AE 23.1 36.1 24.6 66.3 31.1 26.5 53.3 42.9 58.2 45.6 26.5 33.1 46.7 53.7 42.8 40.7(16)

USAD 25.8 43.2 29.3 76.3 44.3 20.9 53.1 42.6 57.9 36.8 19.5 29.3 53.4 59.2 42.2 42.3(12)

TCN-AE 46.5 48.3 47.7 60.2 41.3 46.8 44.3 18.1 67.5 63.1 39.6 29.7 53.0 68.2 57.1 48.8(2)
GenAD 23.4 17.0 22.6 53.7 29.0 5.9 47.1 33.1 51.6 25.4 4.7 2.8 43.6 56.9 38.1 30.3(27)

STGAT-MAD 19.8 44.4 27.7 67.9 47.4 41.8 52.6 40.0 58.1 47.9 27.0 32.4 48.7 59.5 50.7 44.4(7)
AnomalyTransformer 28.5 41.2 49.2 42.6 36.6 43.8 34.9 56.0 67.7 15.8 16.2 42.8 51.3 70.4 18.1 41.0(14)

LSTM-P 34.0 55.1 30.6 68.7 56.7 44.0 53.2 40.4 55.2 52.4 22.1 35.5 51.9 55.1 49.4 47.0(4)
LSTM-S2S-P 58.1 50.2 46.0 64.0 42.5 40.0 50.9 29.0 66.4 67.7 45.7 28.2 62.4 59.3 60.2 51.4(1)
DeepAnt 23.3 39.3 27.0 66.8 28.1 23.8 52.3 42.2 58.0 52.6 20.7 30.0 44.1 51.1 38.9 39.9(18)

TCN-S2S-P 16.2 51.3 29.5 70.0 47.1 46.2 51.2 31.3 54.8 61.1 29.6 34.9 48.7 49.3 58.1 45.3(6)
GDN 24.7 40.1 25.5 62.2 35.7 27.9 52.4 39.9 63.3 41.4 22.7 30.7 44.6 65.2 38.2 41.0(15)

LSTM-VAE 18.6 33.6 34.5 60.5 37.8 39.6 48.7 37.5 54.5 32.7 23.4 35.6 38.1 45.2 39.0 38.6(20)

Donut 18.4 33.7 25.7 62.4 44.0 37.0 43.0 42.0 47.3 60.3 27.1 35.7 53.1 46.7 61.0 42.5(11)

LSTM-DVAE 17.2 34.6 28.0 58.8 26.4 39.3 45.2 36.7 45.4 34.2 21.7 33.2 40.4 49.0 29.6 36.0(24)

GMM-GRU-VAE 21.0 35.5 26.9 69.9 34.8 47.6 49.1 41.2 46.9 64.2 25.0 29.5 44.6 51.6 52.1 42.7(10)

OmniAnomaly 17.6 30.7 31.4 67.1 15.6 41.8 45.6 31.9 49.4 45.9 16.7 20.3 33.2 41.4 52.0 36.0(23)

SIS-VAE 24.6 37.6 26.2 63.8 30.4 29.1 52.7 44.0 59.3 40.4 22.1 31.2 47.0 54.0 42.1 40.3(17)

BeatGAN 26.9 39.9 33.8 78.6 33.4 16.9 52.6 32.9 64.6 34.6 23.1 26.3 43.1 49.0 29.4 39.0(19)

MAD-GAN 28.5 47.3 45.9 74.4 44.9 66.1 50.4 37.3 62.9 60.5 33.4 25.0 52.8 60.7 39.9 48.7(3)
LSTM-VAE-GAN 20.7 35.4 23.9 63.9 33.6 22.2 52.4 16.0 52.8 29.1 20.3 38.1 33.6 53.6 33.3 35.3(25)

TadGAN 33.6 35.1 41.7 72.3 30.0 27.1 55.7 32.6 63.5 33.5 18.9 37.7 52.7 59.0 46.9 42.7(9)

LSTM-AE OC-SVM 9.9 27.0 21.3 51.9 11.4 18.5 21.3 9.9 62.5 53.7 26.3 32.1 32.4 56.1 58.4 32.8(26)

MTAD-GAT 19.2 44.8 26.1 56.9 40.6 42.5 21.1 48.8 64.4 17.0 17.1 38.3 27.1 45.9 35.1 36.3(22)

NCAD 10.2 35.3 45.0 56.8 22.7 54.0 55.4 35.1 70.4 23.4 18.8 27.8 55.7 70.6 44.1 41.7(13)

THOC 25.7 24.7 28.9 49.6 12.4 30.1 18.1 11.7 50.0 21.5 22.8 18.8 26.7 48.5 36.4 28.4(28)

46

Published
in

Transactions
on

M
achine

Learning
R

esearch
(04/2023)

Table 10: Cross-validation results on SMD evaluated with the AUPRC metric introduced by (Tatbul et al., 2018).

Server ID
1 6 8 9 10 11 13 14 16 17 20 21 24 26 27 avg(rank)

LSTM-AE 18.5 53.3 15.8 33.1 50.5 29.9 44.1 38.1 40.3 70.9 17.0 32.2 57.6 25.4 74.9 40.1(1)
LSTM-Max-AE 28.4 24.6 12.8 30.9 23.5 11.4 45.7 13.3 37.5 53.4 5.9 7.4 53.0 28.7 55.8 28.8(19)

MSCRED 38.0 28.3 25.4 13.4 23.8 15.8 45.2 20.9 33.8 69.7 8.6 4.9 52.6 25.2 62.0 31.2(13)

FC-AE 25.3 35.8 14.7 30.2 29.1 18.2 44.2 31.3 39.8 60.5 10.7 21.1 53.8 26.3 71.7 34.2(5)
USAD 21.2 39.2 12.5 31.1 25.6 19.3 43.3 31.3 30.6 54.3 8.2 17.6 49.4 24.7 58.3 31.1(14)

TCN-AE 28.4 31.4 19.5 10.1 17.5 16.0 23.0 7.9 33.1 57.0 13.0 9.7 35.2 28.4 40.6 24.7(24)

GenAD 27.4 25.3 25.1 22.4 39.8 16.2 43.4 41.5 31.5 56.5 10.0 13.2 50.9 26.3 49.2 31.9(12)

STGAT-MAD 22.4 44.2 15.7 31.4 40.2 24.2 45.1 33.0 41.0 63.4 15.8 22.2 57.6 29.4 73.1 37.2(4)
AnomalyTransformer 21.4 32.1 14.2 15.1 26.0 12.7 21.7 20.9 35.7 30.1 7.0 18.1 52.3 24.5 14.7 23.1(25)

LSTM-P 35.4 59.4 17.9 33.2 46.6 32.3 46.8 29.0 34.3 68.6 13.5 24.0 58.1 21.4 75.5 39.7(2)
LSTM-S2S-P 44.4 38.8 28.1 19.8 31.1 13.6 42.3 12.4 35.5 59.2 15.0 14.5 58.9 25.6 54.4 32.9(10)

DeepAnt 24.6 41.3 14.6 30.8 27.8 16.6 43.8 29.9 39.6 56.3 11.0 14.3 54.8 24.4 55.0 32.3(11)

TCN-S2S-P 18.2 55.3 16.7 32.8 41.2 33.8 45.1 21.2 35.6 72.9 18.4 21.8 54.2 18.5 75.5 37.4(3)
GDN 29.8 39.3 15.8 28.7 33.1 16.1 43.5 28.5 40.5 54.6 10.0 18.3 52.4 30.7 55.5 33.1(8)

LSTM-VAE 14.3 30.0 12.0 26.5 32.8 32.7 44.1 21.9 30.2 49.0 13.4 24.5 46.3 14.1 60.2 30.1(15)

Donut 13.3 31.7 11.5 28.1 40.2 31.7 37.0 30.8 27.5 66.3 18.3 24.1 59.6 11.5 69.4 33.4(6)
LSTM-DVAE 11.4 33.3 10.9 22.7 22.5 37.2 40.3 22.5 23.1 39.1 13.8 19.8 45.3 16.6 43.2 26.8(22)

GMM-GRU-VAE 14.6 34.2 13.1 31.9 28.5 42.5 41.9 28.8 23.7 70.4 14.8 13.7 50.9 15.1 75.4 33.3(7)
OmniAnomaly 10.9 32.0 11.5 33.6 9.8 35.1 40.5 13.8 31.3 59.6 10.7 9.2 46.0 10.1 68.0 28.1(21)

SIS-VAE 25.5 40.7 14.5 30.4 28.0 18.4 44.1 32.2 39.5 53.7 10.6 17.7 49.3 25.6 65.7 33.0(9)

BeatGAN 24.7 34.7 14.3 28.8 30.1 13.7 45.1 16.0 35.5 53.5 10.0 13.4 44.7 22.7 51.6 29.2(17)

MAD-GAN 29.1 33.1 18.9 31.1 28.7 11.8 43.2 22.0 32.5 53.9 13.0 9.5 42.4 24.2 41.0 29.0(18)

LSTM-VAE-GAN 23.0 35.6 11.7 31.7 27.7 9.5 45.3 7.1 32.3 43.9 7.9 12.3 30.4 27.2 53.4 26.6(23)

TadGAN 32.7 19.8 13.1 32.3 29.4 12.4 44.9 17.6 41.1 51.7 9.6 11.7 53.2 29.6 50.1 29.9(16)

LSTM-AE OC-SVM 5.6 20.6 6.8 7.7 6.6 10.7 13.9 4.5 25.9 46.9 7.7 7.3 29.6 26.5 52.9 18.2(26)

MTAD-GAT 16.4 43.8 7.8 21.5 33.3 46.5 32.3 27.9 29.4 30.5 10.0 27.5 38.3 15.3 47.3 28.5(20)

NCAD 3.7 14.8 8.4 11.0 3.7 9.9 16.9 2.0 22.5 24.8 10.1 6.1 23.7 8.7 33.4 13.3(28)

THOC 24.4 17.2 8.2 11.2 6.0 10.2 17.9 5.7 13.7 15.7 6.2 8.3 19.4 15.6 50.7 15.3(27)

47

Published
in

Transactions
on

M
achine

Learning
R

esearch
(04/2023)

Table 11: Cross-validation results on SMD evaluated with our adapted best F1 score metric, using TRec∗ and TPrec∗.

Server ID
1 6 8 9 10 11 13 14 16 17 20 21 24 26 27 avg(rank)

LSTM-AE 53.1 70.2 42.4 65.1 68.6 39.8 55.0 62.3 79.7 80.7 25.0 48.7 64.0 62.4 84.6 60.1(1)
LSTM-Max-AE 55.8 28.6 30.3 64.8 34.9 24.6 54.3 26.1 63.1 68.8 16.1 10.6 58.8 61.4 72.4 44.7(17)

MSCRED 51.3 46.3 47.0 58.5 36.1 14.0 47.0 10.1 70.3 73.0 14.3 14.4 52.1 54.3 64.3 43.5(20)

FC-AE 52.2 61.1 40.3 65.1 51.0 29.8 53.0 48.2 75.7 77.2 18.0 36.4 60.3 61.2 85.4 54.3(7)
USAD 43.0 45.0 31.7 63.9 36.0 33.2 52.9 45.2 59.4 68.1 18.7 26.3 52.4 53.7 68.6 46.5(15)

TCN-AE 43.7 49.4 42.1 56.1 34.4 17.1 44.3 17.2 67.1 63.5 23.1 19.1 51.4 66.7 56.1 43.4(21)

GenAD 44.8 17.7 26.6 50.6 28.2 12.3 53.8 25.7 60.2 61.7 5.3 2.9 53.6 58.3 68.9 38.0(24)

STGAT-MAD 48.3 66.5 36.4 66.0 62.6 34.1 52.5 52.5 77.9 77.0 24.0 34.7 60.6 65.0 83.8 56.1(5)
AnomalyTransformer 22.3 45.3 33.0 44.5 27.3 21.0 10.9 32.4 60.7 27.5 13.2 28.4 53.4 56.3 11.6 32.5(27)

LSTM-P 61.7 73.4 46.7 64.2 61.5 37.6 56.7 59.2 77.0 81.4 18.8 35.5 60.0 60.0 83.9 58.5(2)
LSTM-S2S-P 52.4 48.5 46.5 60.1 29.0 20.1 40.3 14.4 71.5 67.5 17.1 23.2 56.1 58.3 61.7 44.5(18)

DeepAnt 50.6 62.0 37.7 65.9 40.8 28.4 52.0 47.0 75.5 68.1 19.2 29.1 61.3 60.2 63.8 50.8(12)

TCN-S2S-P 47.2 73.3 44.6 65.5 57.7 42.6 51.6 42.3 78.8 84.5 27.2 37.2 61.6 60.0 85.5 57.3(3)
GDN 57.8 58.3 40.9 64.9 58.6 29.2 52.7 41.5 67.9 72.5 18.0 33.8 61.6 55.4 74.5 52.5(10)

LSTM-VAE 47.6 63.7 35.2 58.4 64.6 48.8 53.9 42.3 73.8 58.8 20.5 46.3 60.6 52.7 68.8 53.1(9)
Donut 46.5 66.7 38.9 67.1 62.7 47.0 50.2 51.6 65.2 77.5 29.6 34.8 68.7 48.4 76.2 55.4(6)
LSTM-DVAE 42.2 63.8 35.4 56.9 58.4 49.6 50.8 54.8 70.5 48.8 20.1 41.2 60.1 55.2 52.5 50.7(13)

GMM-GRU-VAE 49.1 67.0 38.1 67.1 62.0 60.6 51.2 49.4 68.7 79.2 21.4 35.0 63.3 58.2 83.4 56.9(4)
OmniAnomaly 45.3 67.7 35.3 65.3 42.9 57.7 62.0 40.7 77.0 57.1 16.9 25.7 56.8 44.6 82.4 51.8(11)

SIS-VAE 52.6 65.7 38.4 65.4 50.8 30.9 52.9 49.0 74.9 73.0 21.2 32.8 58.1 63.8 79.1 53.9(8)

BeatGAN 45.3 46.5 34.0 64.1 47.1 25.7 52.7 31.6 61.6 68.7 17.6 24.7 49.0 57.8 65.5 46.1(16)

MAD-GAN 43.4 35.9 37.6 64.1 40.3 19.1 46.8 32.6 65.7 48.6 18.5 9.4 34.3 57.3 32.9 39.1(23)

LSTM-VAE-GAN 47.9 46.9 31.0 67.9 44.4 23.1 56.3 17.8 57.1 56.6 16.1 19.5 37.9 61.6 69.8 43.6(19)

TadGAN 49.0 27.3 22.9 64.1 45.4 22.0 54.4 23.9 64.0 63.3 16.6 18.7 54.5 62.2 49.5 42.5(22)

LSTM-AE OC-SVM 19.0 28.2 24.6 49.3 13.3 23.4 23.5 8.4 50.7 61.6 14.6 8.8 40.5 60.4 67.3 32.9(26)

MTAD-GAT 43.0 65.9 24.1 64.5 52.8 57.1 50.1 43.2 71.0 41.7 16.3 39.6 55.7 57.9 56.6 49.3(14)

NCAD 13.9 25.7 21.3 48.5 10.9 12.5 4.8 3.7 38.6 6.8 12.5 14.3 8.7 40.0 13.4 18.4(28)

THOC 51.4 38.2 27.7 54.0 23.7 22.9 24.7 16.7 51.2 25.7 12.2 17.1 35.0 49.8 64.2 34.3(25)

48

Published
in

Transactions
on

M
achine

Learning
R

esearch
(04/2023)

Table 12: Cross-validation results on SMD evaluated with our adapted AUPRC metric, using TRec∗ and TPrec∗.

Server ID
1 6 8 9 10 11 13 14 16 17 20 21 24 26 27 avg(rank)

LSTM-AE 39.5 70.9 25.6 29.2 65.5 33.8 46.1 59.2 48.8 81.1 17.8 37.1 64.9 31.0 81.8 48.8(1)
LSTM-Max-AE 43.0 18.5 18.5 28.7 24.7 19.4 45.9 14.5 34.7 64.5 6.4 6.1 53.0 30.9 67.8 31.8(20)

MSCRED 45.4 34.9 36.1 13.5 20.1 10.3 40.4 22.5 37.7 68.7 5.5 10.1 49.9 21.0 61.1 31.8(19)

FC-AE 46.3 54.1 24.3 30.0 43.2 23.5 43.8 37.6 43.5 73.0 7.9 24.5 57.3 30.6 82.4 41.4(8)
USAD 35.8 41.9 16.3 26.6 28.9 29.9 43.2 33.4 25.5 63.5 9.2 15.6 46.2 23.3 61.3 33.4(16)

TCN-AE 25.8 30.5 19.0 8.5 12.0 12.5 20.0 9.2 37.1 56.3 9.4 10.3 34.0 31.5 36.1 23.5(24)

GenAD 41.8 28.3 27.6 21.5 39.5 21.3 48.7 40.1 33.7 65.6 10.1 12.8 52.5 28.0 63.1 35.6(14)

STGAT-MAD 42.6 61.1 23.7 30.1 56.6 27.2 45.3 48.6 47.6 77.2 15.7 24.9 62.9 33.5 80.4 45.2(4)
AnomalyTransformer 26.0 37.8 16.3 15.8 26.4 14.2 15.2 16.5 23.3 28.2 7.2 17.7 47.7 24.2 6.7 21.5(25)

LSTM-P 57.8 71.4 30.2 29.0 55.6 34.3 48.6 49.9 46.8 78.8 12.1 27.6 63.0 27.9 82.0 47.7(2)
LSTM-S2S-P 45.5 37.3 33.5 13.9 22.4 12.4 36.6 10.1 38.5 59.6 8.1 15.3 50.1 27.7 56.9 31.2(21)

DeepAnt 45.4 58.3 21.9 30.4 34.1 22.7 45.0 36.5 43.1 64.4 10.8 15.8 62.0 29.5 63.3 38.9(10)

TCN-S2S-P 37.6 71.6 28.0 29.5 51.5 35.8 45.5 33.6 48.1 84.8 19.1 24.6 63.9 26.9 82.9 45.6(3)
GDN 52.8 53.7 27.1 29.1 52.2 25.0 45.2 30.8 37.3 70.7 8.6 21.8 63.8 25.1 73.3 41.1(9)

LSTM-VAE 32.5 53.8 18.3 25.5 56.1 44.0 47.0 27.5 40.2 53.6 12.7 29.2 57.6 18.5 62.6 38.6(11)

Donut 33.0 59.9 20.0 29.8 58.3 40.0 40.6 41.3 36.0 75.0 19.7 25.0 69.4 15.0 73.8 42.5(6)
LSTM-DVAE 26.8 55.6 16.9 20.5 46.3 46.4 43.7 37.4 38.0 40.7 12.0 24.3 56.9 21.7 46.4 35.6(15)

GMM-GRU-VAE 37.4 60.6 20.8 31.6 51.1 56.3 43.9 39.8 36.0 75.7 12.5 18.0 64.6 27.4 81.1 43.8(5)
OmniAnomaly 28.9 57.6 18.5 33.1 25.0 49.1 52.4 23.2 47.8 49.1 11.4 12.7 57.7 11.3 82.2 37.3(12)

SIS-VAE 47.0 63.9 22.4 30.0 42.8 23.1 45.8 36.2 43.3 68.9 11.0 20.2 57.3 32.4 78.2 41.5(7)

BeatGAN 39.8 39.8 21.3 26.1 38.6 20.1 43.6 20.2 29.4 64.2 8.4 15.7 42.7 27.4 57.6 33.0(17)

MAD-GAN 33.3 26.6 18.7 27.1 33.4 14.8 24.8 19.7 33.8 48.3 7.7 4.4 25.6 25.5 31.4 25.0(23)

LSTM-VAE-GAN 40.7 44.2 18.3 34.7 35.3 14.3 49.5 12.2 29.1 53.1 9.1 11.3 29.7 33.2 65.0 32.0(18)

TadGAN 34.9 17.6 8.3 28.2 36.9 17.8 44.0 17.8 31.1 56.8 9.9 9.4 51.6 30.3 48.6 29.6(22)

LSTM-AE OC-SVM 10.2 22.8 9.5 7.3 8.8 16.9 14.0 6.7 17.8 53.0 8.0 3.9 31.9 28.7 56.9 19.8(27)

MTAD-GAT 31.1 65.6 10.4 27.3 46.8 54.1 42.5 32.2 37.0 34.8 10.6 30.1 53.9 23.0 53.3 36.8(13)

NCAD 6.4 17.0 6.3 8.2 3.5 4.3 1.8 1.2 3.8 3.2 9.2 7.4 2.7 5.9 5.8 5.8 (28)

THOC 44.7 26.7 14.7 13.3 10.6 13.2 18.0 12.2 17.4 17.7 5.2 8.2 22.4 15.9 62.2 20.2(26)

49

