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ABSTRACT
We provide a novel interpretation of the dual of support vector
machines (SVMs) in terms of scatter with respect to class pro-
totypes and their mean. As a key contribution, we extend this
framework to multiple classes, providing a new joint Scatter
SVM algorithm, at the level of its binary counterpart in the
number of optimization variables. We identify the associated
primal problem and develop a fast chunking-based optimizer.
Promising results are reported, also compared to the state-of-
the-art, at lower computational complexity.

Index Terms— µ-SVM, scatter, multi-class

1. INTRODUCTION

The support support vector machine (SVM) [1] is normally
defined in terms of a classification hyperplane between two
classes, leading to the primal optimization problem. The pri-
mal is most often translated into a dual optimization problem
in n variables, where n is the number of data points. For
multi-class problems, the SVM is often executed in a one-vs.-
one (OVO) or one-vs.-rest (OVR) mode. Some efforts have
been made to develop joint multi-class SVMs [2, 3, 4, 5, 6],
by extending the primal of binary SVMs. This has the ef-
fect of increasing the number of optimization variables in the
dual, typically to n×C, where C is the number of classes, of-
ten under a huge amount of constraints. This limits practical
usability, due to increased computational complexity.

Even though the actual optimization is carried out in the
dual space, little has been done to analyze properties of SVMs
in view of the dual. One exeption is [7], where SVMs are in-
terpreted in terms of information theoretic learning. Another
exception is the convex hull view [8]. This alternative view
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yields additional insight about the algorithm and has also lead
to algorithmic improvements [9]. An extension from the bi-
nary case to the multi-class case have furthermore been pro-
posed in [10]. The dual view therefore in this case provides a
richer theory by complementing the primal view.

In this paper, we contribute a new view of the dual of bi-
nary SVMs, concentrating on the so-called µ-SVM [11], as
a minimization of between-class scatter with respect to the
class prototypes and their arithmetic mean. Importantly, we
note that scatter is inherently a multi-class quantity, suggest-
ing therefore a natural extension of the µ-SVM to operate
jointly on C classes. Interestingly, this key contribution, fit-
tingly referred to as Scatter SVM, does not introduce more
variables to be optimized than the number n of training ex-
amples, while keeping the number of constraints low. This is
a major computational saving compared to the aforementined
previous joint SVM approaches.

A special case of the optimization problem developed in
this paper turns out to resemble [10], although from a com-
pletely different starting point. This work surpasses [10] in
several aspects, by developing a complete dual-primal theory,
opening up different opportunities wrt. the loss function used
and defining the actual score function to use in testing, and
by developing an efficient solver based on sequential minimal
and chunking optimization.

This paper is organized as follows. In Section 2, the dual
of µ-SVMs is analyzed in terms of scatter and extended to
multiple classes. The primal view is discussed in Sec. 3, ex-
periments are reported in Sec. 4, and the paper is concluded
by Sec. 5.

2. SCATTER SVM

SVMs are normally defined in terms of a class-separating
score function, or hyperplane, f(x) = w>x + b,which
is determined in such a way that the margin of the hy-
perplane is maximized. Let a labeled sample be given by



D = {(xi, yi)}i=1...,n, where each example xi is drawn
from a domain X ∈ Rd and y ∈ {1, 2}. The µ-SVM [11]
optimization problem is given by

min
w,b,ρ,ξi

1
2‖w‖

2 − 2ρ+ µ
∑n
i=1 ξi

s.t. w>xi + b ≥ ρ− ξi, i : yi = 1
w>xi + b ≤ −ρ+ ξi, i : yi = 2
ξi ≥ 0, ∀i.

(1)

Here, 2ρ is the functional margin of the hyperplane, and the
parameter µ controls the emphasis on the minimization of
margin violations, quantified by the slack variables ξi.

By introducing Lagrange multipliers αi, i = 1, . . . , n,
collected in the (n × 1) vector α =

[
α>1 α>2

]>
, where αc

stores {αi}i:yi=c, c = 1, 2, the dual optimization problem
becomes

min
α

1
2α>Kα

s.t. 0 ≤ α ≤ µ1
α>1 = 2
α>1 1 = α>2 1,

(2)

where 1 is an all ones vector1 and

K =
[

K11 −K12

−K21 K22

]
.

The subscripts indicate the two classes and Kcc′ are inner-
product matrices within and between classes. Obviously, the
constraints in Eq. (2) enforce α>c 1 = 1, c = 1, 2.

The optimization determines w explicitly as

w =
∑
i:yi=1

αixi −
∑
i:yi=2

αixi, (3)

where the non-zero αi’s correspond to the support vectors.
The bias b is implicitly determined via the Karush-Kuhn-
Tucker (KKT) conditions. If the bias b is omitted, the last
constraint in Eq. (2) disappears. This is a mild restriction
for high dimensional spaces, since it amounts to reducing the
number of degrees of freedom by one (see also [12]).

Let mc =
∑
i:yi=c

αixi, c ∈ {1, 2}, be a class pro-
totype, where the weights αi determine the properties of the
prototype. Observe that we may express the µ-SVM hyper-
plane weight vector, given by Eq. (3), in terms of prototypes
as w = m1 −m2. It follows that ‖m1 −m2‖2 = α>Kα,
and we may by Eq. (2) conclude that the µ-SVM in the dual
corresponds to minimizing the squared Euclidean distance be-
tween the class prototypes m1 and m2. In terms of the class
prototypes, the score function is expressed as f(x) = (m1 −
m2)>x+b if the bias is included in the primal, or just f(x) =
(m1 −m2)>x, if not.

Interestingly, by introducing the arithmetic mean m̄ =
1
2 (m1 + m2) of the prototypes into the picture, the quan-
tity
∑2
c=1 ‖mc − m̄‖2 equals ‖m1 −m2‖2 up to a constant,

1The length of 1 is given by the context.

and thus also equals α>Kα up to a constant. This provides
a new geometrical way of viewing the dual of the µ-SVM,
which may be related to the multi-class notion of between-
class scatter in pattern recognition. Scatter is normally de-
fined as

∑C
c=1 Pc‖vc− v̄‖2 [13], with respect to class means

vc =
∑
i:yi=c

1
nc

xi, c = 1, . . . , C, and the global mean

v̄ =
∑C
c=1 Pcvc, where Pc is the prior class probability of

the c’th class. Hence, for C = 2, by introducing the weights
αi for each data point xi and by defining the scatter with re-
spect to the class prototypes mc, c = 1, 2, and their arith-
metic mean under the equal class probability assumption, the
cost function

∑2
c=1 ‖mc − m̄‖2 is obtained.

A direct extension of the scatter-based view of the dual to
C classes is proposed here as

min
α

1
2

∑C
c=1 ‖mc − m̄‖2

s.t. 0 ≤ α ≤ µ1
α>1 = C
α>c 1 = 1, c = 1, . . . , C (if bias),

(4)

for mc =
∑
i:yi=c

αixi, m̄ = 1
C

∑C
c=1 mc and weights

α =
[
α>1 . . . α>C

]>
, where αc stores {αi}i:yi=c, c =

1, . . . , C. This constitutes a direct extension of scatter to
multiple classes. In this formulation, it is optional whether
or not to include the last constraint, depending on the score
function bias parameter (primal view), discussed shortly.

It is easily shown that
∑C
c=1 ‖mc − m̄‖2 = α>Kα, up

to a constant, where

K =


γK11 −K12 . . . −K1C

−K21 γK22 . . . −K2C

...
...

. . .
...

−KC1 −KC2 . . . γKCC

 , (5)

γ = C − 1 and Kcc′ are inner-product matrices within and
between classes. Hence, the optimization problem Eq. (4)
may also be expressed as

min
α

1
2α>Kα

s.t. 0 ≤ α ≤ µ1
α>1 = C
α>c 1 = 1, c = 1, . . . , C (if bias),

(6)

The matrix K is (n×n) and positive semi-definite, and there-
fore leads to an optimization problem over a quadratic form
(cf. Eq. (6)), which constitutes a convex cost function. The
box constraints enforce µ ≥ 1/Nmin whereNmin is the num-
ber of points in the smallest class. This Scatter SVM problem
can be solved efficiently by quadratic programming. There
are merely n variables to be optimized, as opposed to n × C
variables for joint approaches like [3, 4]. With the bias in-
cluded, there are O(n+C) simple constraints. This problem
is basically equal to [10]. However, if the bias is omitted,
there are even less constraints, only O(n + 1). This latter



Fig. 1. The result of training Scatter SVM on three classes
(toy data set).

optimization problem is the one we primarily focus on in the
experiments in Section 4. We are thus faced with an opti-
mization problem of much lower computational complexity
than previous joint approaches.

In fact, Eq. (6) lends itself nicely to a solver based
on sequential minimal optimization [14] or chunking op-
timization [15], respectively, depending on whether the
bias is included or not. We have developed very effi-
cient and dedicated solvers for each case, where in the
with-bias mode, the algorithm is based on LIBSVM [16],
and in the without-bias mode, the algorithm is based on
SVMlight [15]. Details of these procedures are deferred
to a longer paper. Both versions are implemented in the
SHOGUN toolbox [17], publicly available for download at
http://www.shogun-toolbox.org/. We will illus-
trate in Section 4 that the Scatter SVM provides a fast and
computationally efficient joint approach.

Figure 1 shows the result of training Scatter SVM on a toy
three-class data set. In this case, there is only one support vec-
tor for each class, thus acting as a class representative. The
arrows indicate the minimized distances between class repre-
sentatives and their geometric mean. Of course this data set
has a ”benign” structure, in that the classes are nicely dis-
tributed around a center point. It is obvious that one may
construct cases where the reference to the mean of the class
prototypes may be problematic. However, by mapping the
data to a richer space, of higher dimensionality, such issues
are avoided. For this reason, and also for increasing the prob-
ability of linearly separable classes, we in general employ the
kernel induced non-linear mapping ψ : X → H, to a Hilbert
space H [18]. Kernel functions k(x,x′) = 〈ψ(x), ψ(x′)〉H
are thus utilized to compute inner products inH.

3. A REGULARIZED RISK MINIMIZATION
FRAMEWORK

For upcoming derivations, we focus on affine-linear mod-
els of the form fc(x) = w>c ψ(x) + bc. As discussed ear-

lier, the bias parameter bc may be removed in the deriva-
tions, which is a mild restriction for the high dimensional
space H we consider. Let the goal be to find a hypothesis
f = (f1, ..., fC) that has low error on new and unseen data.
Labels are predicted according to c∗ = argmaxc fc(x). Reg-
ularized risk minimization returns the minimizer f∗, given
by f∗ = minf Ω(f) + µRemp(f), where the empirical risk
Remp(f) = 1

n

∑n
i=1 l [s(f,xi, yi)], wrt. a convex loss func-

tion l[·], and where Ω(f) is the regularizer.
Commonly, s(f,x, y) = fy(x)− argmaxc 6=y fc(x), i.e..

loss will be defined wrt. fy(x) and the best model fc6=y(x).
However, such an approach gives rise to a large number of
constraints [6, 19]. As a remedy to this issue, we propose
as a different and novel requirement that a hypothesis should
score better than an average hypothesis, that is

s(f,x, y) = fy(x)− 1
C

C∑
c=1

fc(x).

Including for the time being the bias, the average hypoth-
esis thus becomes f̄(x) = w̄>x + b̄ and

s(f,x, y) = (wy − w̄)>ψ(x) + by − b̄, (7)

where w̄ = 1
C

∑C
c=1 wc and b̄ = 1

C

∑C
c=1 bc. Each hyper-

plane wc − w̄, c = 1, . . . , C, is associated with a margin
ρ. The following quadratic regularizer aims to penalize the
norms of these hyperplanes while at the same time maximiz-
ing the margins

Ω(f) =
1
2

∑
c

‖wc − w̄‖2 − Cρ. (8)

The regularized risk thus becomes

1
2

C∑
c=1

||wc−w̄||2−Cρ+µ
∑
i

l
[
(wyi

− w̄)>ψ(xi) + byi
− b̄
]
.

Expanding the loss terms into slack variables leads to the pri-
mal optimization problem

min
wc,w,b,ρ,t

1
2

∑
c ||wc − w̄||2 − Cρ+ µ

∑
i l(ti)

s.t. 〈wyi
− w̄, ψ(xi)〉+ byi

≥ ρ− ti, ∀i
w̄ = 1

C

∑C
c=1 wc

b̄ = 1
C

∑C
c=1 bc = 0.

(9)

The condition b̄ = 0 is necessary in order to obtain the primal
of the binary µ-SVM as a special case of Eq. (9) and to avoid
the trivial solution wc = w̄ = 0 with bc = ρ→∞.

Optimization is often considerably easier in the dual
space. As it will turn out, we can derive the dual prob-
lem of Eq. (9) without knowing the loss function l, in-
stead it is sufficient to work with the Fenchel-Legendre dual
l∗(x) = supt xt− l(t) (e.g. cf. [20, 21]. The approach taken



is first to formulate the Lagrangian of Eq. (9), identify the
Lagrangian saddle point problem, for then to completely re-
move the dependency on the primal variables by inserting the
Fenchel-Legendre dual. Due to space constraints, details of
this derivation are deferred to a longer version of this paper.
However, this yields wc =

∑
i:yi=c

αiψ(xi), ∀c, which is
equal to the expression for the class representative mc in H.
The generalized dual problem obtained is

sup
α
− 1

2
α>Kα− µ

∑
i

l∗(−µ−1αi), (10)

α : α>1 = C, α>c 1 = 1, c = 1, . . . , C (if bias) where l∗

is the Fenchel-Legendre conjugate function, which we subse-
quently denote as dual loss of l.

This formulation admits several possible loss functions.
Utilizing the hinge loss l(t) = max(0, 1 − t) into Eq. (10),
noting that the dual loss is l∗(t) = t if −1 ≤ t ≤ 0 and
∞ elsewise (cf. Table 3 in [22]), we obtain the dual given
in Eq. (6), where the last constraint only applies if the bias
parameter is included in the primal formulation for the score
functions. Interestingly, Eq. (10) shows that the utilization
of different loss functions will produce different optimization
problems. It is left to future work to investigate such issues
more closely, but it illustrates some of the versatility of our
approach.

4. EXPERIMENTS

The aim of the experimental section is to highlight proper-
ties of Scatter SVM in terms of sparsity, generalization ability
and computational efficiency, by performing classification on
some well-known benchmark data sets used in the literature
(see e.g. [23, 6]).

In all experiments, the RBF-kernel is adopted. This is the
most widely used kernel function, given by

k(xi,xj) = e−γ‖xi−xj‖2 , (11)

where γ = 1
2σ2 .

4.1. Experiment on Controlled Artificial Data

We first perform a ”sanity” check of the Scatter SVM in a
controlled scenario. Two data sets, often used in the litera-
ture (e.g. see [18]), are generated: 2d-checker-boards and 2d-
Gaussians evenly distributed on a circle, illustrated in Fig. 2.
Both the number of classes and the number of data points
are increased (cf. Table 1). For the checker (circle) data set
we generated 20 (10) points per class and split the data set
evenly into training and validation set (with an equal number
of points in each class). For this experiment, the Scatter SVM
is executed in with-bias mode, and is contrasted to a one-vs.-
rest (OVR) C-SVM. Both methods are based on LIBSVM as
implemented in the SHOGUN toolbox. We perform model

(a) Circle (b) Checker

Fig. 2. Visualization of toy data sets: (a) 100 class circle data
set (b) 100 class checker data set

USPS # SVs 0 6 9
Scatter SVM 53 47 31
OVR SVM 64 (8) 74 (14) 39 (17)

Table 2. USPS-based analysis of SVs and sparsity.

selection over the parameters on the validation set2. We then
measure time (training + prediction) and classification error
rates (in percent, rounded) for the best performing model.

With reference to Table 1, the execution times of Scatter
SVM compare favorably to the OVR C-SVM, and in the most
extreme case correspond to a speed up factor up to 27. Scat-
ter SVM achieves a higher generalization ability than OVR.
This might be because these data sets contain a fixed num-
ber of examples per class and are thus well suited for Scatter
SVM. In other words, selecting this data may imply a bias
towards Scatter SVM. However, these experiments illustrate
in particular the speed-up properties of our algorithm while
maintaining good generalization.

4.2. Case-Based Analysis of SVs and Sparsity

We perform an experiment in order to analyze the sparsity
of Scatter SVM. A three-class data set is created by extract-
ing the classes ”0”, ”6” and ”9” from the U.S. Postal Ser-
vice (USPS) data set. We randomly select 1500 data points
for training, and create a validation set for determining an
appropriate kernel size. For this, and all remaining experi-
ments, Scatter SVM operates in the without-bias mode based
on a SHOGUN SVMlight implementation. The ”µ” param-
eter in Scatter SVM translates into a ”C” parameter, similar
to the parameter in the OVR C-SVM. Both methods are now
trained on eleven logarithmically C-parameters from 10−3 to
103. The validation procedure is performed over 76 kernel
sizes γ = 2κ for κ between −10 and 5 in steps of 0.2 in Eq.
(11). Scatter SVM and the OVR C-SVM obtain best valida-
tion results corresponding to 99.87 and 99.38 percent success
rate, respectively. If αi > 10−6 defines a SV, then Scatter
SVM produces 131 SVs, corresponding to 8.7% of the train-

2For SVMs RBF-kernels of width σ2 ∈ {0.1, 1, 5}, SVMC ∈
{0.01, 0.1, 1, 10, 100}, and ν ∈ {C/N, 0.5, 0.999}.



Dataset Checker-Board Circle Method
Error [%] 35 49 50 22 24 22 21 OVR SVM

24 40 41 14 17 18 17 Scatter SVM
Time (s) 0.05 1.77 102.15 0.02 3.51 1,229.30 197,236.71 OVR SVM

0.06 1.59 85.21 0.01 2.11 46.27 42,401.26 Scatter SVM
#Classes 10 100 1,000 10 100 1,000 10,000
N 200 2,000 20,000 100 1,000 10,000 100,000

Table 1. Time comparison of the proposed Scatter SVM to the OVR LIBSVM training strategy.

ing data. The number of SVs for each class is shown in Table
2, together with the SV structure for the C-SVM. The num-
ber in parenthesis indicate the number of unique SVs of that
class obtained in the ”rest” part of the training. The number of
all unique SVs is 216 corresponding to 14.4% of the training
data. These experiments show that Scatter SVM may perform
on par with a OVR C-SVM with respect to the sparsity of the
solution. This we consider encouraging.

4.3. Generalization Ability on Benchmark Data Sets

To investigate further the generalization ability of Scatter
SVM, we perform classification experiments on some well-
known benchmark multi-class data sets commonly encoun-
tered in the literature (see e.g. [23, 6, 3]). The data sets are
listed in Table 3. For those cases where specific test data sets
are missing, we perform 10-fold cross-validation over the pa-
rameters and report the best result. If a test set is available, we
simply report the best result over all combinations of parame-
ters. The data sets are obtained from the LIBSVM web-site3,
(except MNIST) pre-processed such that all attributes are in
the range [−1, 1]. The MNIST data4 is normalized to unit
length.

In this experiment, the Scatter SVM is contrasted to
OVR C-SVM, one-vs.-one (OVO) C-SVM and Crammer and
Singer’s (CS) [6] multi-class SVM. All methods are trained
for the same set of parameters and kernel sizes as in the
previous section. The results, shown in Table 3, indicate
that Scatter SVM has been able to generalize well, and to
obtain classification results which are comparable to these
state-of-the-art alternatives. Considering that Scatter SVM
constitutes a more restricted model with far less variables
of optimization, we consider these results encouraging, in
the sense that Scatter SVM may perform well at a reduced
computational cost. For example, running CS on the ”Vowel”
data (full cross-validation) required 3 days of computations.
All the three other methods only required a small fraction of
that time.

The tendency seems to be that where the results differ
somewhat, the OVO C-SVM, in particular, has an edge. This

3http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/
datasets/multiclass.html

4Obtained from http://cs.nyu.edu/˜roweis/data.html

is not surprising compared to Scatter SVM, since the refer-
ence to the global mean in Scatter SVM introduces a form of
stiffness in terms of the regularization of the model, which
will require a certain homogeneity among the classes, with
respect to e.g. noise and outliers, to be at its most effective.
For noisy data sets, a more fine grained class wise regulariza-
tion approach will have many more variables of optimization
available to capture the fine structure in the data, at the ex-
pense of computational simplicity. The USPS data may rep-
resent such an example, where Scatter SVM performs worse
than all the alternatives.

5. CONCLUSIONS

By providing a new interpretation of the dual of µ-SVMs in
terms of scatter, we have have proposed and implemented a
multi-class extension named Scatter SVM. Promising results
have been obtained.
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